Continuous-depth analysis of soluble greenhouse gases in ice cores
冰芯中可溶性温室气体的连续深度分析
基本信息
- 批准号:NE/X011283/1
- 负责人:
- 金额:$ 2.25万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2023
- 资助国家:英国
- 起止时间:2023 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Greenhouse gas levels in our atmosphere continue to rise steeply. Concentrations of carbon dioxide, methane and nitrous oxide are higher than at least the last 800,000 years of Earth's history. As our planet warms as a result, we face an uncertain future: how will our climate system respond? What feedbacks might be triggered, or tipping-points surpassed? And how quickly could abrupt changes occur? For answers to these questions, we can look to the past. Polar ice cores are particularly useful because they hold samples of ancient air, on which we can directly measure past changes in greenhouse gases. The current state-of-the-art in ice core analysis involves measuring the chemistry of water and air continuously as a stick of ice core is slowly melted. This method has proven highly effective for methane and has produced unprecedented records at centimetre-scale resolution. However, carbon dioxide, the most important greenhouse gas, and nitrous oxide, cannot yet be measured in this way, which limits the detail we can resolve. Crucially, our current methods make it difficult to resolve natural variability in carbon dioxide and nitrous oxide over human-relevant timescales of decades to centuries. The major challenge is that carbon dioxide and nitrous oxide are highly soluble gases. When ice sticks are melted, both gases quickly dissolve in the water and are difficult to recover. This project will develop a new method to efficiently extract carbon dioxide and nitrous oxide from a continuous stream of melted ice core. A range of factors impacting the degree of dissolution will be systematically tested and optimised. Gases will be measured with a suite of laser spectrometers specially adapted for the low gas flow rates obtained from ice. Parallel measurements on meltwater will be used to constrain the interaction between atmospheric carbon dioxide and carbonate-rich dust. Tests will be carried out on selected Antarctic ice core samples with different greenhouse gas levels to demonstrate the reliability of this innovative method relative to traditional techniques. This exploratory work pushes for a breakthrough in the way we measure greenhouse gases in ice cores. An online, continuous, method that enables high-resolution measurements of the three major greenhouse gases would revolutionise ice core science. Less than a decade ago, state-of-the-art discrete techniques for methane would require many years of analysis to produce a typical ice core record. Today, the same analysis can be done within a few months. This has shifted ice cores gas studies to a new, data-rich era. This work aims to enable a similarly significant scale-shift for scientific studies of carbon dioxide and nitrous oxide.
我们大气中的温室气体水平继续急剧上升。二氧化碳、甲烷和一氧化二氮的浓度至少高于地球过去80万年的历史。随着我们的地球变暖,我们面临着一个不确定的未来:我们的气候系统将如何应对?可能会触发什么反馈,或者超过什么临界点?突如其来的变化能以多快的速度发生?对于这些问题的答案,我们可以回顾一下过去。极地冰芯特别有用,因为它们保存着古代空气的样本,在这些样本上,我们可以直接测量过去温室气体的变化。目前最先进的冰芯分析包括在冰芯缓慢融化时连续测量水和空气的化学成分。这种方法已被证明对甲烷非常有效,并在厘米级分辨率上创造了前所未有的记录。然而,最重要的温室气体二氧化碳和一氧化二氮还不能用这种方式测量,这限制了我们可以解决的细节。至关重要的是,我们目前的方法使我们很难解决二氧化碳和一氧化二氮在与人类相关的数十年至数百年的时间尺度上的自然变异性。主要的挑战是二氧化碳和一氧化二氮是高度可溶的气体。当冰棒融化时,这两种气体都会迅速溶解在水中,很难回收。该项目将开发一种新的方法,从连续融化的冰芯中高效地提取二氧化碳和一氧化二氮。将对一系列影响溶解程度的因素进行系统的测试和优化。气体将使用一套激光光谱仪进行测量,该光谱仪专门针对从冰中获得的低气体流速进行改造。对融水的平行测量将被用来限制大气二氧化碳和富含碳酸盐的尘埃之间的相互作用。将对选定的不同温室气体水平的南极冰芯样本进行测试,以证明这一创新方法相对于传统技术的可靠性。这项探索性工作推动了我们测量冰芯温室气体的方法的突破。一种能够对三种主要温室气体进行高分辨率测量的在线、连续的方法将给冰芯科学带来革命性的变化。不到十年前,最先进的甲烷离散技术需要多年的分析才能产生典型的冰芯记录。如今,同样的分析可以在几个月内完成。这使冰芯天然气研究进入了一个数据丰富的新时代。这项工作旨在为二氧化碳和一氧化二氮的科学研究实现类似的重大规模转变。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Towards continuous ice core measurements of N2O and CO2
实现 N2O 和 CO2 的连续冰芯测量
- DOI:10.5194/egusphere-egu24-19981
- 发表时间:2024
- 期刊:
- 影响因子:0
- 作者:Rowell I
- 通讯作者:Rowell I
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rachael Rhodes其他文献
Continuous measurements of methane mixing ratio from ice cores: method development at NIPR and initial test with the Mizuho ice-core
冰芯甲烷混合比的连续测量:NIPR 的方法开发和 Mizuho 冰芯的初步测试
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Remi Dallmayr;Kenji Kawamura;Rachael Rhodes;Kumiko Goto-Azuma;Vaseilios Gkinis;Kyotaro Kitamura;Motohiro Hirabayashi and Edward J. Brook - 通讯作者:
Motohiro Hirabayashi and Edward J. Brook
Past abrupt changes, tipping points and cascading impacts in the Earth system
过去地球系统中的突然变化、临界点和连锁影响
- DOI:
10.1038/s41561-021-00790-5 - 发表时间:
2021-07-29 - 期刊:
- 影响因子:16.100
- 作者:
Victor Brovkin;Edward Brook;John W. Williams;Sebastian Bathiany;Timothy M. Lenton;Michael Barton;Robert M. DeConto;Jonathan F. Donges;Andrey Ganopolski;Jerry McManus;Summer Praetorius;Anne de Vernal;Ayako Abe-Ouchi;Hai Cheng;Martin Claussen;Michel Crucifix;Gilberto Gallopín;Virginia Iglesias;Darrell S. Kaufman;Thomas Kleinen;Fabrice Lambert;Sander van der Leeuw;Hannah Liddy;Marie-France Loutre;David McGee;Kira Rehfeld;Rachael Rhodes;Alistair W. R. Seddon;Martin H. Trauth;Lilian Vanderveken;Zicheng Yu - 通讯作者:
Zicheng Yu
Methane concentration in the Dome Fuji ice core measured by a continuous flow analysis system: method and initial results from the LGM to Holocene
通过连续流分析系统测量富士圆顶冰芯中的甲烷浓度:从末次盛冰期到全新世的方法和初步结果
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Kenji Kawamura;Ayaka Yonekura;Ikumi Oyabu;Kyotaro Kitamura;Remi Dallmayr;Rachael Rhodes;Jun Ogata;Motohiro Hirabayashi;Kaori Fukuda;Kumiko Goto-Azuma;Hideaki Motoyama - 通讯作者:
Hideaki Motoyama
Rachael Rhodes的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
高分辨率DOI位置灵敏型闪烁探测器技术研究
- 批准号:10805049
- 批准年份:2008
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Advanced Sample Preparation, Separation and Multiplexed Analysis for In-Depth Proteome Profiling of >1000 Single Cells Per Day
先进的样品制备、分离和多重分析,每天对超过 1000 个单细胞进行深入的蛋白质组分析
- 批准号:
10642310 - 财政年份:2023
- 资助金额:
$ 2.25万 - 项目类别:
Continuous-depth analysis of soluble greenhouse gases in ice cores
冰芯中可溶性温室气体的连续深度分析
- 批准号:
NE/X011348/1 - 财政年份:2023
- 资助金额:
$ 2.25万 - 项目类别:
Research Grant
Neuronal network analysis based on artificial intelligence (AI) improves anesthesia-depth monitoring to the next generation
基于人工智能 (AI) 的神经元网络分析将麻醉深度监测提升至下一代
- 批准号:
23K08328 - 财政年份:2023
- 资助金额:
$ 2.25万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Enhancing robotic head and neck surgical skills using stimulated simulation
使用刺激模拟增强机器人头颈手术技能
- 批准号:
10586874 - 财政年份:2023
- 资助金额:
$ 2.25万 - 项目类别:
A versatile lens architecture to shape visible light
用于塑造可见光的多功能镜头架构
- 批准号:
10652885 - 财政年份:2023
- 资助金额:
$ 2.25万 - 项目类别:
Encoding of probability distributions of 3D estimates in mind and brain
心智和大脑中 3D 估计概率分布的编码
- 批准号:
10463171 - 财政年份:2022
- 资助金额:
$ 2.25万 - 项目类别:
Enhanced mass-spectrometry-based approaches for in-depth profiling of the cancer extracellular matrix
增强型基于质谱的方法,用于深入分析癌症细胞外基质
- 批准号:
10493806 - 财政年份:2022
- 资助金额:
$ 2.25万 - 项目类别:
Smart-phone-integrated, non-invasive, depth-resolved optical spectroscopy for the detection of neonatal jaundice
用于检测新生儿黄疸的智能手机集成、非侵入性、深度分辨光谱
- 批准号:
10677538 - 财政年份:2022
- 资助金额:
$ 2.25万 - 项目类别:
In-depth Understanding of HIV Risk Behavior among Men Who Have Sex With Men in Sub-Saharan Africa: Secondary Analysis of HPTN 075 Data
深入了解撒哈拉以南非洲地区男男性行为者的艾滋病毒风险行为:HPTN 075 数据的二次分析
- 批准号:
10645082 - 财政年份:2022
- 资助金额:
$ 2.25万 - 项目类别:
Advanced methods for depth-based human pose estimation and motion analysis: application to vital signs monitoring in the intensive care unit
基于深度的人体姿势估计和运动分析的先进方法:应用于重症监护病房的生命体征监测
- 批准号:
RGPIN-2020-06695 - 财政年份:2022
- 资助金额:
$ 2.25万 - 项目类别:
Discovery Grants Program - Individual