CryptoBioVision: Applying Computer Vision for Cryptic Species Discovery

CryptoBioVision:应用计算机视觉发现神秘物种

基本信息

  • 批准号:
    NE/X011518/1
  • 负责人:
  • 金额:
    $ 10.27万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2023
  • 资助国家:
    英国
  • 起止时间:
    2023 至 无数据
  • 项目状态:
    未结题

项目摘要

Most of the biodiversity on the planet remains undescribed, unstudied, and unseen. This is sometimes referred to as the "Linnean shortfall", named after the great Swedish naturalist Carl Linneaus. A solid understanding of modern species diversity, their relationships to each other, how they live and where, is necessary to confidently study and answer many of the most basic questions in ecology and evolution, such as: how and why did modern biodiversity evolve? But perhaps more urgently, the Linnean shortfall fundamentally impedes our understanding of the magnitude of the global biodiversity crisis, and ultimately, how to respond to it.One of the biggest reasons for the shortfall is because many closely related species look very similar or indistinguishable to the eyes of scientists, so called "cryptic species". Thus, to help close the shortfall, we need to develop new methods to accelerate the discovery and aid the descriptions of cryptic species. In our proposal, we aim to show that recent advances in Computer Vision (hereafter CV) technology can help provide a solution. CV is a rapidly developing field in which computers are trained to recognise, extract and measure information from digital images. While CV is poised to become an essential tool for eco-evolution and taxonomy research, there are currently no studies showing that CV can be used for cryptic species discovery and description. Our overarching aim for this proposal is to bring together emerging technologies (CV) with traditional and established methods (fieldwork, DNA barcoding, taxonomy) to enhance and accelerate biodiversity discovery and aid descriptions of cryptic species from multiple habitat types. Our pilot research shows that we can train our models to match individual specimens to the correct species using digital images. We also show that CV can identify the morphological features that distinguish between pairs of cryptic species. These novel and innovative methods will provide scientists the means to accelerate the discovery and descriptions of cryptic species and to better study their ecology and evolution.We develop three proof-of-concept studies that apply CV to digital images of field collected and natural history museum specimens. We focus on animal groups with high cryptic diversity from coastal, deep-sea, and terrestrial habitats - spanning temperate, subtropical, and tropical regions. In the first study, we propose field trips to collect specimens of coastal molluscs from a region of high cryptic diversity, the Baja peninsula in Mexico (where the PI has a strong research background). We will apply our CV models to distinguish between cryptic species of limpets in the genus Lottia. Pilot results are promising and reveal that the outer margins of the shells are useful distinguishing features. In the second study, we will apply our CV models to >600 specimens of deep-sea amphipods in the genus Eurythenes, which has high cryptic diversity. Pilot results show that our CV models identify >90% of specimens to the correct species and highlights dorsal regions as distinctive areas of interest. In our third study, we work with our NMH partners to develop CV models for identifying cryptic species within the digital pinned insect collection, which is the largest and most diverse collection of its kind (millions of specimens from all over the globe). In this era of global change, we need to develop ground-breaking and innovative approaches to help close the "Linnean shortfall" if we are to: (i) fully grasp the magnitude of the biodiversity crisis and (ii) do something about it. Collectively, our studies aim to be the first to showcase the powerful utility of integrating CV with traditional methods for addressing the Linnean shortfall. Our future goal is to develop an online platform (CryptoBioVision) that will allow researchers from across the globe to apply our CV models to their study groups.
地球上的大多数生物多样性仍然没有被描述,没有被研究,也没有被发现。这有时被称为“林奈短缺”,以伟大的瑞典博物学家卡尔·林奈命名。对现代物种多样性,它们之间的关系,它们如何生活以及在哪里生活的深入了解,对于自信地研究和回答生态学和进化中许多最基本的问题是必要的,例如:现代生物多样性是如何以及为什么进化的?但也许更紧迫的是,林奈短缺从根本上阻碍了我们对全球生物多样性危机严重程度的理解,并最终阻碍了我们如何应对它。短缺的最大原因之一是因为许多密切相关的物种在科学家眼中看起来非常相似或难以区分,即所谓的“神秘物种”。因此,为了弥补这一不足,我们需要开发新的方法来加速发现和帮助描述神秘物种。在我们的提案中,我们的目标是表明计算机视觉(以下简称CV)技术的最新进展可以帮助提供解决方案。CV是一个快速发展的领域,计算机被训练来识别,提取和测量数字图像中的信息。虽然CV有望成为生态进化和分类学研究的重要工具,但目前还没有研究表明CV可用于发现和描述神秘物种。我们的总体目标是将新兴技术(CV)与传统和成熟的方法(实地调查,DNA条形码,分类学)结合起来,以增强和加速生物多样性的发现,并帮助描述来自多种栖息地类型的神秘物种。我们的试点研究表明,我们可以训练我们的模型,使用数字图像将个体标本与正确的物种相匹配。我们还表明,CV可以识别的形态特征,区分对神秘的物种。这些新颖和创新的方法将为科学家提供加速神秘物种的发现和描述以及更好地研究其生态和进化的方法。我们开发了三个概念验证研究,将CV应用于野外收集和自然历史博物馆标本的数字图像。我们专注于从沿海,深海和陆地栖息地具有高度神秘多样性的动物群体-跨越温带,亚热带和热带地区。在第一项研究中,我们建议实地考察,以收集沿海软体动物的标本,从一个地区的高神秘的多样性,在墨西哥的巴哈半岛(PI有很强的研究背景)。我们将应用我们的CV模型来区分在属Lottia的帽贝的神秘物种。试点结果是有希望的,并揭示了外壳的外缘是有用的区分功能。在第二项研究中,我们将把我们的CV模型应用于600多个深海端足类标本,其中包括具有高度隐蔽多样性的Eurythenes属。初步结果表明,我们的CV模型将>90%的标本识别为正确的物种,并将背侧区域突出为感兴趣的独特区域。在我们的第三项研究中,我们与NMH合作伙伴合作开发CV模型,用于识别数字固定昆虫收藏中的神秘物种,这是同类中最大和最多样化的收藏(来自地球仪的数百万标本)。在这个全球变化的时代,我们需要开发突破性和创新性的方法来帮助解决“林奈短缺”,如果我们要:(i)充分把握生物多样性危机的严重性,(ii)做一些事情。总的来说,我们的研究旨在成为第一个展示将CV与传统方法相结合解决林奈短缺的强大效用的研究。我们未来的目标是开发一个在线平台(CryptoBioVision),使来自世界各地的地球仪研究人员能够将我们的CV模型应用于他们的研究小组。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Using computer vision to identify limpets from their shells: a case study using four species from the Baja California peninsula
  • DOI:
    10.3389/fmars.2023.1167818
  • 发表时间:
    2023-07
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Jack D. Hollister;Xiaohao Cai;T. Horton;B. Price;K. M. Zarzyczny;Phillip B. Fenberg
  • 通讯作者:
    Jack D. Hollister;Xiaohao Cai;T. Horton;B. Price;K. M. Zarzyczny;Phillip B. Fenberg
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Phillip Fenberg其他文献

Phillip Fenberg的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Applying Artificial Intelligence and Computer Vision to Open Source Distributed Recycling and Additive Manufacturing of Waste Plastic
将人工智能和计算机视觉应用于废塑料开源分布式回收和增材制造
  • 批准号:
    RGPIN-2022-03872
  • 财政年份:
    2022
  • 资助金额:
    $ 10.27万
  • 项目类别:
    Discovery Grants Program - Individual
Applying Artificial Intelligence and Computer Vision to Open Source Distributed Recycling and Additive Manufacturing of Waste Plastic
将人工智能和计算机视觉应用于废塑料开源分布式回收和增材制造
  • 批准号:
    RGPNS-2022-03872
  • 财政年份:
    2022
  • 资助金额:
    $ 10.27万
  • 项目类别:
    Discovery Grants Program - Northern Research Supplement
Applying computer vision to natural history collections for ecological, taxonomic, and conservation research
将计算机视觉应用于自然历史收藏,以进行生态、分类和保护研究
  • 批准号:
    2570094
  • 财政年份:
    2021
  • 资助金额:
    $ 10.27万
  • 项目类别:
    Studentship
Built Environment Assessment through Computer visiON (BEACON): Applying Deep Learning to Street-Level and Satellite Images to Estimate Built Environment Effects on Cardiovascular Health
通过计算机视觉进行建筑环境评估 (BEACON):将深度学习应用于街道和卫星图像,以估计建筑环境对心血管健康的影响
  • 批准号:
    10192819
  • 财政年份:
    2020
  • 资助金额:
    $ 10.27万
  • 项目类别:
Built Environment Assessment through Computer visiON (BEACON): Applying Deep Learning to Street-Level and Satellite Images to Estimate Built Environment Effects on Cardiovascular Health
通过计算机视觉进行建筑环境评估 (BEACON):将深度学习应用于街道和卫星图像,以估计建筑环境对心血管健康的影响
  • 批准号:
    10675445
  • 财政年份:
    2020
  • 资助金额:
    $ 10.27万
  • 项目类别:
Built Environment Assessment through Computer visiON (BEACON): Applying Deep Learning to Street-Level and Satellite Images to Estimate Built Environment Effects on Cardiovascular Health
通过计算机视觉进行建筑环境评估 (BEACON):将深度学习应用于街道和卫星图像,以估计建筑环境对心血管健康的影响
  • 批准号:
    10444927
  • 财政年份:
    2020
  • 资助金额:
    $ 10.27万
  • 项目类别:
Applying Artificial Intelligent Method in a Wearable Computer to Improve Brace Treatment for Scoliosis
在可穿戴计算机中应用人工智能方法改善脊柱侧弯的支具治疗
  • 批准号:
    529207-2018
  • 财政年份:
    2018
  • 资助金额:
    $ 10.27万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
Contactless bodily measurement for fish using a computer vision: Estimation of fish body mass applying 3D points cloud processing
使用计算机视觉对鱼类进行非接触式身体测量:应用 3D 点云处理估计鱼类体重
  • 批准号:
    17K15306
  • 财政年份:
    2017
  • 资助金额:
    $ 10.27万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
A study on brain-computer interface based on event-related potentialsapplying eye-gaze detection for the severely disabled. Applying eye-gaze detection for the severely disabled.
基于事件相关电位的脑机接口应用于重度残疾人眼球注视检测的研究
  • 批准号:
    22500503
  • 财政年份:
    2010
  • 资助金额:
    $ 10.27万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Project ASK: Applying Student Knowledge for Success in Computer Science
Project ASK:运用学生知识在计算机科学领域取得成功
  • 批准号:
    0804664
  • 财政年份:
    2008
  • 资助金额:
    $ 10.27万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了