Applying Artificial Intelligence and Computer Vision to Open Source Distributed Recycling and Additive Manufacturing of Waste Plastic

将人工智能和计算机视觉应用于废塑料开源分布式回收和增材制造

基本信息

  • 批准号:
    RGPIN-2022-03872
  • 负责人:
  • 金额:
    $ 4.66万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

People will recycle for money. In places where cash is offered for cans and bottles, metal and glass recycling has been a great success. Sadly, there are fewer cash incentives for recycling plastic and only 9% of plastic waste is recycled. The rest pollutes landfills or the environment. But now, several technologies have matured that allow people to recycle waste plastic directly by 3D printing it into valuable products, at a fraction of their normal cost. People are using their own recycled plastic to make decorations and gifts, home and garden products, accessories and shoes, toys and games, sporting goods and gadgets from millions of free designs. This approach is called distributed recycling and additive manufacturing, or DRAM for short. The first step in DRAM is to sort and wash the plastic with soap and water. Next, the plastic needs to be ground into particles. Then the particles are either turned into 3D printer filament using recyclebots (waste plastic extruders), and used on low-cost 3D printers or it is directly 3D printed by fusing particles. Our research has shown DRAM is not only better for the environment, but it is also highly profitable for people making their own products. Using open source designs to produce your own products is more cost-effective than purchasing them. If you used recycled plastic you can save over 99% from the commercial equivalent. This is exciting, however DRAM is limited, and is currently only used by technically-savvy first adopters because of five challenges: 1) There is no easy way to identify if plastic can be used for DRAM, 2) there is no low-cost method of shredding thin plastic like PET water bottles at home, 3) recyclebots make bad filament from non-uniform waste feedstocks, 4) low-cost 3D printers suffer from a range of failures for exact digital replication of designs, and 5) large 3D printers are prohibitively expensive and fail more often. The long-term objective of this research program is to overcome these five challenges related to the upcycling plastic and other wastes into final products in open source DRAM systems by: 1) developing a low-cost rapid method to evaluate waste for DRAM based on an open source melt flow index; 2) developing a desktop energy-efficient mostly 3D printable shredder capable of rendering thin plastic containers to flakes; 3) integrating a computer vision automatic feedback system to control recyclebot-extruded 3D printing filament from waste materials so it can be made more uniform; 4) integrating an open source artificial intelligence program and computer vision to fix 3D printing errors in real time; and 5) using recyclebots as printers for hanging cable 3D printers. All together this smart DRAM system will help drive the cost and complexity of DRAM down so that everyone including those living in an isolated and remote communities, indigenous or those doing military/humanitarian deployments - can easily use waste plastic to make products that they need.
人们会为了钱而回收。在那些用现金购买易拉罐和瓶子的地方,金属和玻璃回收取得了巨大的成功。可悲的是,回收塑料的现金奖励较少,只有9%的塑料废物被回收利用。其余的污染垃圾填埋场或环境。但现在,一些技术已经成熟,允许人们通过3D打印将废塑料直接回收到有价值的产品中,而成本只是正常成本的一小部分。人们正在使用自己的回收塑料来制作装饰品和礼物,家居和花园产品,配件和鞋子,玩具和游戏,体育用品和数百万个免费设计的小工具。这种方法被称为分布式回收和增材制造,简称DRAM。DRAM的第一步是用肥皂和水对塑料进行分类和清洗。接下来,需要将塑料研磨成颗粒。然后,这些颗粒要么使用废塑料挤出机(废塑料挤出机)变成3D打印机细丝,并用于低成本3D打印机,要么通过熔融颗粒直接3D打印。我们的研究表明,DRAM不仅对环境更好,而且对制造自己产品的人来说也是非常有利可图的。使用开源设计来生产自己的产品比购买它们更具成本效益。如果您使用再生塑料,您可以从商业等效物中节省99%以上。这是令人兴奋的,但DRAM是有限的,目前只有技术娴熟的第一个采用者使用,因为五个挑战:1)没有简单的方法来识别塑料是否可以用于DRAM,2)在家里没有低成本的方法来切碎像PET水瓶这样的薄塑料,3)机器人从不均匀的废物原料中制造坏丝,4)低成本3D打印机在精确数字复制设计方面存在一系列故障,5)大型3D打印机价格昂贵,故障更频繁。该研究计划的长期目标是克服与将塑料和其他废物升级回收为开源DRAM系统中的最终产品相关的五个挑战:1)开发一种低成本的快速方法,以基于开源熔体流动指数评估DRAM的废物; 2)开发一种台式节能的3D打印粉碎机,能够将薄塑料容器粉碎成薄片; 3)集成计算机视觉自动反馈系统,以控制从废料中挤出的3D打印细丝,使其更加均匀; 4)集成开源人工智能程序和计算机视觉,以真实的时间修复3D打印错误;以及5)使用机器人作为悬挂电缆3D打印机的打印机。 总之,这种智能DRAM系统将有助于降低DRAM的成本和复杂性,使每个人,包括那些生活在偏远社区的人,土著人或那些从事军事/人道主义部署的人,都可以轻松地使用废塑料来制造他们需要的产品。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Pearce, Joshua其他文献

Food without sun: price and life-saving potential
  • DOI:
    10.1108/fs-04-2018-0041
  • 发表时间:
    2019-03-11
  • 期刊:
  • 影响因子:
    2
  • 作者:
    Denkenberger, David;Pearce, Joshua;Black, Ryan
  • 通讯作者:
    Black, Ryan

Pearce, Joshua的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Pearce, Joshua', 18)}}的其他基金

Applying Artificial Intelligence and Computer Vision to Open Source Distributed Recycling and Additive Manufacturing of Waste Plastic
将人工智能和计算机视觉应用于废塑料开源分布式回收和增材制造
  • 批准号:
    RGPNS-2022-03872
  • 财政年份:
    2022
  • 资助金额:
    $ 4.66万
  • 项目类别:
    Discovery Grants Program - Northern Research Supplement
Effects of nanostructure and defect states in solar photovoltaic materials
太阳能光伏材料中纳米结构和缺陷态的影响
  • 批准号:
    371462-2009
  • 财政年份:
    2011
  • 资助金额:
    $ 4.66万
  • 项目类别:
    Discovery Grants Program - Individual
Effects of nanostructure and defect states in solar photovoltaic materials
太阳能光伏材料中纳米结构和缺陷态的影响
  • 批准号:
    371462-2009
  • 财政年份:
    2010
  • 资助金额:
    $ 4.66万
  • 项目类别:
    Discovery Grants Program - Individual
Effects of nanostructure and defect states in solar photovoltaic materials
太阳能光伏材料中纳米结构和缺陷态的影响
  • 批准号:
    371462-2009
  • 财政年份:
    2009
  • 资助金额:
    $ 4.66万
  • 项目类别:
    Discovery Grants Program - Individual
Emittance of solar selective absorbers
太阳能选择性吸收器的发射率
  • 批准号:
    375266-2009
  • 财政年份:
    2008
  • 资助金额:
    $ 4.66万
  • 项目类别:
    Research Tools and Instruments - Category 1 (<$150,000)

相似海外基金

ARISTOTELES - Applying ARtificial Intelligence to Define clinical trajectorieS for personalized predicTiOn and early deTEctiOn of comorbidiTy and muLtimorbidiTy pattErnS
亚里士多德 - 应用人工智能定义临床轨迹,以实现个性化预测以及合并症和多发病模式的早期检测
  • 批准号:
    10103153
  • 财政年份:
    2023
  • 资助金额:
    $ 4.66万
  • 项目类别:
    EU-Funded
Applying ARtificial Intelligence to define clinical trajectorieS for personalized predicTiOn and early deTEction of comorbidity and muLtimorbidity pattErnS (ARISTOTELES)
应用人工智能定义临床轨迹,以进行个性化预测以及合并症和多发病模式的早期检测(亚里士多德)
  • 批准号:
    10102350
  • 财政年份:
    2023
  • 资助金额:
    $ 4.66万
  • 项目类别:
    EU-Funded
Applying ARtificial Intelligence to Define clinical trajectorieS for personalized predicTiOn and early deTEctiOn of comorbidiTy and muLtimorbidiTy pattErnS
应用人工智能定义临床轨迹,以实现个性化预测以及合并症和多发病模式的早期检测
  • 批准号:
    10087783
  • 财政年份:
    2023
  • 资助金额:
    $ 4.66万
  • 项目类别:
    EU-Funded
Applying Innovative Artificial Intelligence Approaches to a Large Sleep Physiologic Biorepository to Integrate Sleep Disruption in Cardiovascular Risk Calculation
将创新的人工智能方法应用于大型睡眠生理生物库,将睡眠中断纳入心血管风险计算
  • 批准号:
    10731500
  • 财政年份:
    2023
  • 资助金额:
    $ 4.66万
  • 项目类别:
Applying ARtificial Intelligence to Define clinical trajectorieS for personalized predicTiOn and early deTEctiOn of comorbidiTy and muLtimorbidiTy pattErnS
应用人工智能定义临床轨迹,以实现个性化预测以及合并症和多发病模式的早期检测
  • 批准号:
    10105578
  • 财政年份:
    2023
  • 资助金额:
    $ 4.66万
  • 项目类别:
    EU-Funded
Applying Artificial Intelligence and Computer Vision to Open Source Distributed Recycling and Additive Manufacturing of Waste Plastic
将人工智能和计算机视觉应用于废塑料开源分布式回收和增材制造
  • 批准号:
    RGPNS-2022-03872
  • 财政年份:
    2022
  • 资助金额:
    $ 4.66万
  • 项目类别:
    Discovery Grants Program - Northern Research Supplement
Research on educational systems applying image media and artificial intelligence technologies
应用图像媒体和人工智能技术的教育系统研究
  • 批准号:
    22K02869
  • 财政年份:
    2022
  • 资助金额:
    $ 4.66万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of diagnosis support system for mastication and swallowing function applying machine learning by artificial intelligence
应用人工智能机器学习开发咀嚼吞咽功能诊断支持系统
  • 批准号:
    19K19091
  • 财政年份:
    2019
  • 资助金额:
    $ 4.66万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
An Early-Stage Planning Strategy for Applying Artificial Intelligence to Investigate Opioid-Related Health Inequities
应用人工智能调查阿片类药物相关健康不平等的早期规划策略
  • 批准号:
    404366
  • 财政年份:
    2019
  • 资助金额:
    $ 4.66万
  • 项目类别:
    Miscellaneous Programs
Towards applying the Artificial Intelligence (AI) system in the studies with diplomatic records
致力于将人工智能(AI)系统应用于外交记录研究
  • 批准号:
    17K18549
  • 财政年份:
    2017
  • 资助金额:
    $ 4.66万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了