CO2 - H2 Optimisation in Rocks for Underground Storage (CHORUS)

CO2 - H2 地下储存岩石中的优化 (CHORUS)

基本信息

  • 批准号:
    NE/X012751/1
  • 负责人:
  • 金额:
    $ 6.73万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2022
  • 资助国家:
    英国
  • 起止时间:
    2022 至 无数据
  • 项目状态:
    已结题

项目摘要

The UK is poised to embrace net zero carbon emission technologies to meet its Paris accord targets, by combining an increasing use of the renewables with efficient underground hydrogen storage (UHS) and long-planned Carbon Capture Usage and Storage (CCUS) schemes. This proposal will advance knowledge needed to combine UHS with CCUS (i.e., a win-win strategy), by developing a novel seismic monitoring tool to capture key geophysical properties of the stored hydrogen (H2). Specifically, UHS implies cyclic injection/depletion activities to deal with seasonal fluctuations associated with energy demands. But for the cycle to be successful, a cushion gas is needed to keep the reservoir pressurised. Carbon dioxide (CO2) being an abundant greenhouse gas, is a promising, environmentally friendly alternative. Its use as cushion gas, if successful, could significantly reduce the cost of seasonal H2 retrieval and open up novel research directions.In most storage projects, fluids injected in geological formations are seismically monitored by associating the variation of seismic velocity and amplitude with fluid content. However, if H2 is injected in a CO2-cushioned reservoir, the similar acoustic properties of both gases together with the short timescales to settle within an injection/extraction cycle obscure the H2 seismic visibility. CHORUS will test the hypothesis that a viscosity contrast is the key to seismic H2 detectability in a H2-CO2 storage scenario. We propose to test this hypothesis in three stages, using our current expertise with multi-flow laboratory tests, modelling and dispersive wave propagation. First, we will perform laboratory measurements of the elastic and transport properties of reservoir rocks saturated with the fluids present in UHS applications. We will control these experiments to emulate viscosity contrasts of H2-CO2 at reservoir conditions. Second, we will apply existing rock physics models established for CCUS to calculate the seismic velocities, attenuation and dispersion of these rocks under different saturation conditions. This will involve reservoir rocks saturated with H2-water and CO2-water below a caprock seal. We will calibrate these models using the novel dataset. Third, we will scale up our finds by calculating synthetic seismic data corresponding to a vertical seismic profile (time-lapse experiment with attenuation contrast between different fluid regimes) controlled by the viscosity contrast and informed by the experimental data. Using this synthetic dataset, we will conduct a sensitivity analysis to assess the limits of seismic detectability of H2.Outcomes of this proposal have the potential to de-risk UHS monitoring by enhancing our ability to quantify H2 through better seismic resolution of the H2-CO2 interface. A better understanding of the dispersive properties of H2-saturated rocks will enable policy-makers to identify seismic attributes associated with fracturing and quantifying leakage risk. Altogether will facilitate both the planning of efficient monitoring strategies for industrial seasonal UHS. We propose to disseminate our results in the form of two (6-monthly) reports, a collaborative scientific publication in a lead academic journal and a conference publication, and openly accessible datasets from the rock physics and the synthetic seismic experiments. Using this project as springboard proof-of-concept, we intend to consolidate its finds by pursuing a long-term UK collaboration through a NERC Pushing Frontiers funding proposal, to include the assessment of caprock integrity by incorporating geomechanical effects from fracturing on seismic signatures. Such a proposal would incorporate fundamental research, as well as detailed anisotropic modelling of fractured top-seal/reservoir and seismic data. In addition, our theoretical advancements can complement ongoing UHS studies, both in NOC (NERC MOET), and UoE (EPSRC HyStorPore) with novel rock physical knowledge.
英国有望通过将可再生能源的使用与有效的地下氢存储(UHS)和长期计划的碳捕获用法和存储(CCUS)方案相结合,来采用零碳排放技术来满足其巴黎协定目标。该建议将通过开发一种新型的地震监测工具来捕获储存的氢(H2)的关键地球物理特性(H2),将UHS与CCUS与CCU(即双赢策略)相结合所需的知识。具体而言,UHS意味着循环注射/耗竭活动,以应对与能源需求相关的季节性波动。但是,要使周期成功,需要一种缓冲气体以保持储层加压。二氧化碳(CO2)是一种丰富的温室气体,是一种有前途的环保替代品。如果成功的话,它用作缓冲气体的用途可以大大降低季节性H2检索的成本并打开新的研究方向。在大多数储存项目中,注入地质地层中注入的流体是通过将地震速度和振幅与流体含量的变化相关联而在地震中监测的。但是,如果将H2注入二氧化碳含量的储层中,则两种气体的相似声学特性以及短的时间尺度在注入/提取周期内沉淀,遮盖了H2地震可见性。合唱将检验以下假设:在H2-CO2存储方案中,粘度对比是地震H2可检测性的关键。我们建议使用当前的多流实验室测试,建模和色散波传播的当前专业知识,在三个阶段进行三个阶段检验这一假设。首先,我们将对储层岩石的弹性和运输特性进行实验室测量,这些储层岩石与UHS应用中存在的流体饱和。我们将控制这些实验,以模拟在储层条件下H2-CO2的粘度对比。其次,我们将应用为CCUS建立的现有岩石物理模型来计算这些岩石在不同饱和条件下的地震速度,衰减和分散。这将涉及储层岩石,含有H2-Water和Caprock密封下方的二氧化碳和二氧化碳。我们将使用新型数据集对这些模型进行校准。第三,我们将通过计算与垂直地震概况相对应的合成地震数据(延时实验与不同流体状态之间的衰减对比度)来扩展发现,该数据由粘度对比度控制,并通过实验数据告知。使用此合成数据集,我们将进行灵敏度分析,以评估该提案H2的地震可检测性的限制,该建议的Comcomes具有通过更好地通过H2-CO2界面更好地量化H2量化H2来增强我们量化H2的能力来降低风险的UHS监测。更好地了解H2饱和岩石的分散性能将使决策者能够确定与压裂和量化泄漏风险相关的地震属性。总体而言,将有助于为工业季节性UHS的有效监测策略的计划。我们建议以两个(6个月)的报告的形式传播我们的结果,这是主要学术期刊和会议出版物中的合作科学出版物,并从岩石物理学和合成地震实验中公开访问数据集。我们打算将该项目作为跳板概念验证,通过通过NERC推动Frontiers资助建议进行长期英国协作来巩固其发现,包括通过对地震签名的分裂效果纳入地震效应来评估Caprock完整性。这样的建议将结合基础研究,并详细介绍了断裂的顶级/储层和地震数据的各向异性建模。此外,我们的理论进步都可以补充NOC(NEC MOET)和UOE(EPSRC Hystorpore)中正在进行的UHS研究,并具有新颖的岩石物理知识。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ismael Falcon-Suarez其他文献

Application of Rhizon SMS for the assessment of the hydrodynamic properties of unconsolidated fine grained materials
  • DOI:
    10.1016/j.enggeo.2014.02.001
  • 发表时间:
    2014-04-08
  • 期刊:
  • 影响因子:
  • 作者:
    Ismael Falcon-Suarez;Dieter Rammlmair;Ricardo Juncosa-Rivera;Jordi Delgado-Martin
  • 通讯作者:
    Jordi Delgado-Martin
Pressure-varying CO<sub>2</sub> distribution affects the ultrasonic velocities of synthetic sandstones
  • DOI:
    10.1016/j.ijggc.2018.03.022
  • 发表时间:
    2018-07-01
  • 期刊:
  • 影响因子:
  • 作者:
    Giorgos Papageorgiou;Ismael Falcon-Suarez;Mark Chapman;Angus Best
  • 通讯作者:
    Angus Best

Ismael Falcon-Suarez的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ismael Falcon-Suarez', 18)}}的其他基金

FAPESP-Enhancing Hydro-Mechanical Predictions of CO2-REactive Storage reservoirs from geophysical monitoring (EHMPRES)
FAPESP - 通过地球物理监测增强 CO2 反应性储层的水力力学预测 (EHMPRES)
  • 批准号:
    NE/X003248/1
  • 财政年份:
    2022
  • 资助金额:
    $ 6.73万
  • 项目类别:
    Research Grant
Geomechanical Assessment of CO2 Storage Reservoir Integrity Post-closure (GASRIP)
关闭后二氧化碳封存完整性的地质力学评估 (GASRIP)
  • 批准号:
    NE/R013535/2
  • 财政年份:
    2019
  • 资助金额:
    $ 6.73万
  • 项目类别:
    Fellowship
Geomechanical Assessment of CO2 Storage Reservoir Integrity Post-closure (GASRIP)
关闭后二氧化碳封存完整性的地质力学评估 (GASRIP)
  • 批准号:
    NE/R013535/1
  • 财政年份:
    2018
  • 资助金额:
    $ 6.73万
  • 项目类别:
    Fellowship

相似国自然基金

自具微孔聚合物 H2/CO2 筛分膜的结构设计和分离机制研究
  • 批准号:
    22378282
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于低浓度H2检测的微波界面调控制备MXene-MO-MOS复合材料及其气敏机理研究
  • 批准号:
    52304400
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于CO2/H2与醇羰化反应的非贵金属无卤催化新体系构筑
  • 批准号:
    22372182
  • 批准年份:
    2023
  • 资助金额:
    50.00 万元
  • 项目类别:
    面上项目
环境气氛(H2O、H2、O2)与铀氮化合物表面相互作用机制理论研究
  • 批准号:
    12304274
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
关于制备H2/CO比值可控富氢还原气的理论与关键技术基础研究
  • 批准号:
    52274322
  • 批准年份:
    2022
  • 资助金额:
    54.00 万元
  • 项目类别:
    面上项目

相似海外基金

高活性可視光応答光触媒電極を用いるCO2の還元/ H2生成セルの構築
使用高活性可见光响应光催化电极构建二氧化碳还原/氢气生成电池
  • 批准号:
    23K21769
  • 财政年份:
    2024
  • 资助金额:
    $ 6.73万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Zero Embrittlement H2 Tank Coating Testing ( Phase 3 )
零脆化氢气储罐涂层测试(第 3 阶段)
  • 批准号:
    10106846
  • 财政年份:
    2024
  • 资助金额:
    $ 6.73万
  • 项目类别:
    Launchpad
Smart ResSim Technology - Reducing Uncertainties for Advanced CO2 and H2 Storage Processes
Smart ResSim 技术 - 减少先进 CO2 和 H2 存储过程的不确定性
  • 批准号:
    10090798
  • 财政年份:
    2024
  • 资助金额:
    $ 6.73万
  • 项目类别:
    Collaborative R&D
Enhancing CH4, H2 purity by Selective Removal of CO2 & Gas Impurities utilising Natural Synergies Proprietary Composite and MOF's
通过选择性去除 CO2 提高 CH4、H2 纯度
  • 批准号:
    10074942
  • 财政年份:
    2023
  • 资助金额:
    $ 6.73万
  • 项目类别:
    Launchpad
H2GLASS - advancing Hydrogen (H2) technologies and smart production systems TO decarbonise the GLass and Aluminium SectorS
H2GLASS - 先进的氢 (H2) 技术和智能生产系统,使玻璃和铝行业脱碳
  • 批准号:
    10063137
  • 财政年份:
    2023
  • 资助金额:
    $ 6.73万
  • 项目类别:
    EU-Funded
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了