Simulating UNder ice Shelf Extreme Topography (SUNSET)

模拟冰架下极端地形(日落)

基本信息

  • 批准号:
    NE/X014061/1
  • 负责人:
  • 金额:
    $ 69.47万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2023
  • 资助国家:
    英国
  • 起止时间:
    2023 至 无数据
  • 项目状态:
    未结题

项目摘要

Global average sea level is rising at an ever-accelerating rate. Given the huge economic and societal impacts of this change, accurate forecasts of sea level are urgently needed to inform policymakers considering mitigation and adaptation strategies. Melting of the Antarctic and Greenland ice sheets currently contributes about one third of sea-level rise. The future of this melting is highly uncertain, and the worst-case scenario involves a substantial ice-sheet contribution to dangerous sea-level rise. The largest ice-sheet contribution to sea level occurs when the ocean melts the base of ice shelves (floating extensions of the grounded ice sheet), increasing the flow of grounded ice into the ocean. The melt rate of ice shelves is determined by the transfer of heat from the ocean towards the ice. Recently, extreme topographic features, including step-like terraces and 1-10 km wide channels, have been discovered to be ubiquitous on the underside of rapidly melting ice shelves. These features significantly modify the patterns and rates of melting, and so are crucial to predicting sea level. However, such features are generally too small to be resolved in climate models and their effect must be understood and explicitly built into these models. We will investigate how extreme topography on the underside of ice shelves changes ocean currents and melting. Beneath ice shelves with a smooth, gradually sloping base, melting can be viewed as a vertical process, and this is how it is currently represented in climate models. However, observations show that melting on the steeply sloping sides of extreme ice topography is actually horizontal, and much faster than the melting of a smooth ice base. In addition, turbulent ocean eddies generated by extreme topographic features will mix warm water up towards the ice, further enhancing the melting. We will observe the influence of extreme ice topography beneath an Antarctic ice shelf using pressurised hot water to drill through more than a kilometre of ice, enabling access to the ocean cavity beneath. We will study the controls on melting using a targeted suite of the latest observational measurements: radar and sonar to track the ice topography and melting, and acoustic ocean current profiling and a string of temperature sensors to monitor the mixing of ocean heat towards the ice. This will provide a unique dataset of the close interaction between ocean mixing and ice melting.We will then combine these observations with a hierarchy of computer simulations to develop a new representation of the effect of extreme ice topography in climate models. We will first simulate the flow around extreme topographic features using high-resolution large-eddy simulations, which resolve the ocean turbulence. This will provide insight into the mixing of warm water to the ice base, and its interaction with melting. We will then use an ocean model to study the role of ice channel geometry on the melt rate and flow properties. Using these simulations, we will develop mathematical formulae to represent the influence of extreme ice topography. We will implement these formulae into the ocean model and test its ability to represent the influence of extreme ice topography in climate models.
全球平均海平面正在以越来越快的速度上升。鉴于这一变化的巨大经济和社会影响,迫切需要准确预测海平面,以便为考虑缓解和适应战略的政策制定者提供信息。南极和格陵兰冰盖的融化目前约占海平面上升的三分之一。这种融化的未来非常不确定,最糟糕的情况是冰盖对危险的海平面上升有很大的贡献。冰盖对海平面的最大贡献发生在海洋融化冰架底部(地面冰盖的浮动延伸部分)时,增加了地面冰流入海洋的流量。冰架的融化速度取决于热量从海洋向冰层的转移。最近,在快速融化的冰架底部,发现了包括阶梯状梯田和1-10公里宽的水道在内的极端地形特征。这些特征显著改变了融化的模式和速度,因此对预测海平面至关重要。然而,这些特征通常太小,无法在气候模型中解决,必须了解它们的影响,并明确地将其纳入这些模型。我们将研究冰架底部的极端地形如何改变洋流和融化。在冰架下,冰架的底部是平坦的,逐渐倾斜的,融化可以被视为一个垂直的过程,这就是目前气候模型中所表示的。然而,观察表明,极端冰川地形陡峭斜坡上的融化实际上是水平的,而且比光滑的冰基融化快得多。此外,极端地形特征产生的湍流海洋涡流会将温暖的水混合到冰面上,进一步促进融化。我们将观察南极冰架下极端冰层地形的影响,使用加压热水钻穿超过一公里的冰,使其能够进入下面的海洋洞穴。我们将使用一套有针对性的最新观测测量来研究对融化的控制:跟踪冰地形和融化的雷达和声纳,以及声学洋流剖面图和一系列温度传感器,以监测海洋热量向冰层混合的情况。这将为海洋混合和冰川融化之间的密切相互作用提供一个独特的数据集。然后,我们将把这些观测与计算机模拟的层次结构结合起来,开发出极端冰川地形在气候模型中影响的新表示。我们将首先使用高分辨率大涡模拟来模拟极端地形地物周围的流动,其中解决了海洋湍流。这将提供对温水与冰基的混合以及它与融化的相互作用的洞察。然后,我们将使用海洋模型来研究冰道几何形状对融化速度和流动特性的影响。利用这些模拟,我们将开发出数学公式来表示极端冰川地形的影响。我们将把这些公式应用到海洋模式中,并测试其在气候模式中表示极端冰川地形影响的能力。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Paul Holland其他文献

The Effect Technology has on Student Comprehension and Motivation
技术对学生理解和动机的影响
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Paul Holland
  • 通讯作者:
    Paul Holland
Warm bath for an ice sheet
对冰原来说是温暖的沐浴
  • DOI:
    10.1038/ngeo801
  • 发表时间:
    2010-02-14
  • 期刊:
  • 影响因子:
    16.100
  • 作者:
    Paul Holland
  • 通讯作者:
    Paul Holland
913. Histone Deacetylase Inhibitors Improve Gene Transfer To Mature Skeletal Muscle
  • DOI:
    10.1016/j.ymthe.2006.08.1003
  • 发表时间:
    2006-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Nancy Larochelle;Jatinderpal R. Deol;Paul Holland;George Karpati;Josephine Nalbantoglu
  • 通讯作者:
    Josephine Nalbantoglu
66 Quantification of differences between semi-automated lung nodule volumetry software packages
66 半自动化肺结节体积测量软件包之间差异的量化
  • DOI:
    10.1016/j.lungcan.2025.108176
  • 发表时间:
    2025-02-01
  • 期刊:
  • 影响因子:
    4.400
  • 作者:
    Paul Holland;Emma O'Dowd;Bindu George;Iain Au-Yong;David Baldwin
  • 通讯作者:
    David Baldwin

Paul Holland的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Paul Holland', 18)}}的其他基金

Anthropogenic Forcing of Antarctic Ice Loss (AnthroFAIL)
南极冰损的人为强迫(AnthroFAIL)
  • 批准号:
    NE/X000397/1
  • 财政年份:
    2023
  • 资助金额:
    $ 69.47万
  • 项目类别:
    Research Grant
UKESM 1 Year Extension
UKESM 1 年延期
  • 批准号:
    NE/V013335/1
  • 财政年份:
    2021
  • 资助金额:
    $ 69.47万
  • 项目类别:
    Research Grant
Drivers of Oceanic Change in the Amundsen Sea (DeCAdeS) (Joint Reference: W2980705)
阿蒙森海海洋变化的驱动因素 (DeCAdeS)(联合参考号:W2980705)
  • 批准号:
    NE/V010484/1
  • 财政年份:
    2020
  • 资助金额:
    $ 69.47万
  • 项目类别:
    Research Grant
Quantifying Human Influence on Ocean Melting of the West Antarctic Ice Sheet
量化人类对南极西部冰盖海洋融化的影响
  • 批准号:
    NE/S011994/1
  • 财政年份:
    2019
  • 资助金额:
    $ 69.47万
  • 项目类别:
    Research Grant
The UK Earth system modelling project.
英国地球系统建模项目。
  • 批准号:
    NE/N01801X/1
  • 财政年份:
    2016
  • 资助金额:
    $ 69.47万
  • 项目类别:
    Research Grant
Characterising the Ice Shelf/Ocean Boundary Layer
描述冰架/海洋边界层的特征
  • 批准号:
    NE/N010027/1
  • 财政年份:
    2016
  • 资助金额:
    $ 69.47万
  • 项目类别:
    Research Grant
Is ice loss from West Antarctica driven by ocean forcing or ice and ocean feedbacks?
南极洲西部的冰损失是由海洋强迫还是冰和海洋反馈驱动的?
  • 批准号:
    NE/M001660/1
  • 财政年份:
    2014
  • 资助金额:
    $ 69.47万
  • 项目类别:
    Research Grant
Multi-Technique Bio-Analytical Investigation at the Single / Sub-Cellular Level Using a New Lab-On-A-Chip Technology Platform
使用新的芯片实验室技术平台在单/亚细胞水平上进行多技术生物分析研究
  • 批准号:
    EP/I038799/1
  • 财政年份:
    2011
  • 资助金额:
    $ 69.47万
  • 项目类别:
    Research Grant
Calculating the rate of Antarctic Bottom Water formation using new theory, fine-scale modelling and observations
利用新理论、精细尺度建模和观测计算南极底层水形成率
  • 批准号:
    NE/I025867/1
  • 财政年份:
    2011
  • 资助金额:
    $ 69.47万
  • 项目类别:
    Research Grant
Collaborative Research on Social Networks: Mathematical Theory, Methods and Application
社交网络协同研究:数学理论、方法与应用
  • 批准号:
    7726823
  • 财政年份:
    1978
  • 资助金额:
    $ 69.47万
  • 项目类别:
    Standard Grant

相似国自然基金

体硅下薄膜(TUB,Thinfilm Under Bulk)复合结构成型机理及其高性能器件研究
  • 批准号:
    61674160
  • 批准年份:
    2016
  • 资助金额:
    65.0 万元
  • 项目类别:
    面上项目

相似海外基金

Greenland Ice Sheet and sea-level response under climate change from AD 1600 to 2100
公元1600年至2100年气候变化下的格陵兰冰盖和海平面响应
  • 批准号:
    NE/Y000129/1
  • 财政年份:
    2024
  • 资助金额:
    $ 69.47万
  • 项目类别:
    Research Grant
Simulating UNder ice Shelf Extreme Topography (SUNSET)
模拟冰架下极端地形(日落)
  • 批准号:
    NE/X013782/1
  • 财政年份:
    2023
  • 资助金额:
    $ 69.47万
  • 项目类别:
    Research Grant
Observations and Micromechanical Modeling of the Behavior of Snow/Ice Lenses Under Load in Order to Understand Avalanche Nucleation
为了了解雪崩成核,对雪/冰透镜在负载下的行为进行观察和微机械建模
  • 批准号:
    2227842
  • 财政年份:
    2023
  • 资助金额:
    $ 69.47万
  • 项目类别:
    Standard Grant
Collaborative Research: Ideas Lab: BLUES: Boundary Layer Under-ice Environmental Sensing
合作研究:创意实验室:BLUES:冰下边界层环境传感
  • 批准号:
    2322223
  • 财政年份:
    2023
  • 资助金额:
    $ 69.47万
  • 项目类别:
    Continuing Grant
Collaborative Research: Ideas Lab: BLUES: Boundary Layer Under-ice Environmental Sensing
合作研究:创意实验室:BLUES:冰下边界层环境传感
  • 批准号:
    2322220
  • 财政年份:
    2023
  • 资助金额:
    $ 69.47万
  • 项目类别:
    Standard Grant
Collaborative Research: Ideas Lab: BLUES: Boundary Layer Under-ice Environmental Sensing
合作研究:创意实验室:BLUES:冰下边界层环境传感
  • 批准号:
    2322222
  • 财政年份:
    2023
  • 资助金额:
    $ 69.47万
  • 项目类别:
    Standard Grant
Collaborative Research: Ideas Lab: BLUES: Boundary Layer Under-ice Environmental Sensing
合作研究:创意实验室:BLUES:冰下边界层环境传感
  • 批准号:
    2322221
  • 财政年份:
    2023
  • 资助金额:
    $ 69.47万
  • 项目类别:
    Continuing Grant
Studies on the relation between the growth kinetics and surface structures of ice crystals under ultra-high temperature
超高温下冰晶生长动力学与表面结构关系研究
  • 批准号:
    23H01862
  • 财政年份:
    2023
  • 资助金额:
    $ 69.47万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Riverbed deformation around multiple pile bridge piers under ice-covered conditions - experimental study in a large-scale flume and numerical simulation
冰覆盖条件下多桩桥墩周围河床变形——大型水槽试验研究与数值模拟
  • 批准号:
    RGPIN-2019-04278
  • 财政年份:
    2022
  • 资助金额:
    $ 69.47万
  • 项目类别:
    Discovery Grants Program - Individual
Advanced Autonomous Underwater Vehicle Long Range Under-ice Navigation and Localization
先进自主水下航行器远程冰下导航和定位
  • 批准号:
    RGPIN-2018-05486
  • 财政年份:
    2022
  • 资助金额:
    $ 69.47万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了