Investigating the potential for catastrophic collapse of Greenland's 'land'-terminating glacier margins

调查格陵兰岛“陆地”终止冰川边缘发生灾难性崩塌的可能性

基本信息

  • 批准号:
    NE/X01536X/1
  • 负责人:
  • 金额:
    $ 79.16万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2023
  • 资助国家:
    英国
  • 起止时间:
    2023 至 无数据
  • 项目状态:
    未结题

项目摘要

The Greenland Ice Sheet (GrIS) has been losing mass over the past three decades and is now a significant contributor to global sea-level rise. In recent decades, the ice sheet's rate of mass (or ice) loss has accelerated, driven by a warming climate and substantial increases both in: 1) the flow speed and retreat rate of many large glaciers that drain the ice sheet and terminate in the ocean; and 2) the surface melt rates and area of the ice sheet experiencing summer melting. However, a critical area of future potential dynamic change and ice-mass loss, which is unaccounted for in our current model projections of the Greenland Ice Sheet's future evolution, concerns the influence of ice-marginal (or proglacial) lake formation on the dynamic stability of outlet glaciers.It is well known from numerous observations elsewhere, that glaciers which terminate in proglacial lakes typically flow much faster than similar sized glaciers that terminate on land. It is now also clear that the number and size of proglacial lakes around the margins of the GrIS are increasing and that trend will continue in to the future. There is therefore the clear potential for the development of more lake-terminating glaciers affecting the ice-sheets' ice-dynamics and long-term stability with the possibility of a dramatic (or 'catastrophic') acceleration in ice-mass loss from these hitherto slowly changing ice-margins.Greenland's land-terminating ice-sheet margins currently flow rather slowly (~100 m/yr) and their mass loss is controlled almost entirely by surface-melt processes. Since the climate is warming, these land-terminating glaciers are thinning and retreating slowly. However, in numerous glaciated regions around the globe, glacier termini are accelerating (by a factor of 2 or more) where glaciers terminate in lakes as opposed to adjacent land-terminating glaciers. This occurs because when a glacier terminates in a lake, it experiences processes which lead to glacier calving, thinning and acceleration. These processes lead to enhanced ice mass loss from the terminus calving and retreat but also through the glacier acceleration which brings ice more rapidly from higher to lower elevations on the ice-sheet thereby exposing the ice to warmer temperatures that promote increased surface melt. As such, a rather simple change in glacier terminus morphology can have a dramatic impact on the glaciers' ice dynamics and mass loss. This project will determine the extent to which these developing proglacial lakes will impact future ice-sheet mass loss, and thus contribute to sea-level rise, over the coming century.We have already undertaken a proof-of-concept study revealing contrasting behaviour at two adjacent lake- and land-terminating glaciers in SW Greenland. Using satellite data to derive glacier velocities, our study shows that ice-motion at the lake-terminating margin more than doubled between 2017-2021 (to ~200 m/yr); by contrast, the neighbouring land-terminating glacier decelerated over the same time-period. We now aim to determine the extent to which these observations of recent acceleration are typical at Greenland's numerous lake terminating margins and more importantly, investigate how important ice-marginal lake terminating glacier dynamics will become in the future for ice-sheet mass loss.In order to achieve this broad aim, the project will use a range of satellite data in conjunction with surface mass balance and ice-sheet modelling to determine: i) how glacier terminus position, motion and surface elevation have changed, both at the ice-margin and inland, in recent decades in response to glacier termination in proglacial lakes; ii) what processes are driving these observed changes in terminus behaviour; and iii) the impact of proglacial lake-induced ice-margin acceleration, thinning and retreat, on the Greenland Ice Sheet's sea level rise contributions, under projected climate warming over the next century.
格陵兰冰盖(GRIS)在过去30年里一直在减少质量,现在是全球海平面上升的一个重要因素。近几十年来,由于气候变暖和以下两个方面的大幅增加,冰盖质量(或冰)的丧失速度加快:1)许多大型冰川的流动速度和退缩速度,这些冰川排干冰盖并终止于海洋;2)经历夏季融化的冰盖的表面融化速度和面积。然而,未来潜在的动态变化和冰块质量损失的一个关键区域,在我们目前对格陵兰冰盖未来演变的模型预测中没有考虑到,它涉及到冰缘(或冰川)湖泊形成对出口冰川动态稳定性的影响。从其他地方的大量观察中众所周知,终止于前冰川湖泊的冰川通常比终止于陆地的类似大小的冰川流动得更快。现在也很清楚,冰川湖泊的数量和规模都在增加,而且这一趋势将持续到未来。因此,有明显的潜力发展更多的终止湖泊的冰川,影响冰盖的动力学和长期稳定性,并有可能因为这些迄今缓慢变化的冰缘而急剧(或灾难性地)加速冰块的质量损失。格陵兰的陆地终止冰盖边缘目前流动相当缓慢(约100米/年),它们的质量损失几乎完全由表面融化过程控制。由于气候变暖,这些以陆地为终点的冰川正在变薄并缓慢消退。然而,在全球许多冰川地区,冰川末端正在加速(加快2倍或更多),那里的冰川终止于湖泊,而不是邻近的陆地终止冰川。这是因为当冰川终止于湖泊时,它会经历导致冰川崩解、变薄和加速的过程。这些过程不仅导致冰川末端崩解和退缩的质量损失增加,而且还通过冰川加速,使冰盖上的冰更快地从高海拔到低海拔,从而使冰暴露在更温暖的温度下,从而促进表面融化。因此,冰川末端形态的一个相当简单的变化就可以对冰川的冰动力学和质量损失产生巨大的影响。这个项目将确定这些正在发展的冰川湖泊将在多大程度上影响未来冰盖的质量损失,从而在未来一个世纪内导致海平面上升。我们已经进行了一项概念验证研究,揭示了格陵兰西南部两个相邻的湖泊和陆地终止冰川的行为对比。利用卫星数据得出冰川的速度,我们的研究表明,在2017-2021年期间,湖泊末端边缘的冰运动增加了一倍以上(达到约200米/年);相比之下,邻近的陆地末端冰川在同一时间段减速。我们现在的目标是确定这些近期加速观测在格陵兰众多湖泊终止边缘的典型程度,更重要的是,调查冰缘湖泊终止冰川动力学在未来对冰盖质量损失的重要性。为了实现这一广泛目标,该项目将使用一系列卫星数据,结合表面物质平衡和冰盖模拟来确定:i)近几十年来,响应于前冰川湖泊的冰川终止,冰川末端的位置、运动和表面海拔在冰缘和内陆发生了怎样的变化;ii)是什么过程推动了这些观察到的末端行为的变化;冰川湖引起的冰缘加速、变薄和退缩对格陵兰冰盖海平面上升贡献的影响,预计下个世纪的气候变暖。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Peter Nienow其他文献

A Frontal Ablation Dataset for 49 Tidewater Glaciers in Greenland
格陵兰岛 49 条入海口冰川的锋面消融数据集
  • DOI:
    10.1038/s41597-025-04948-3
  • 发表时间:
    2025-04-10
  • 期刊:
  • 影响因子:
    6.900
  • 作者:
    Dominik Fahrner;Donald A. Slater;Aman KC;Claudia Cenedese;David A. Sutherland;Ellyn Enderlin;M. Femke de Jong;Kristian K. Kjeldsen;Michael Wood;Peter Nienow;Sophie Nowicki;Till J. W. Wagner
  • 通讯作者:
    Till J. W. Wagner
Ammonia sets limit to life and alters physiology independently of pH in Halomonas meridiana
氨对生命设定限制并独立于 pH 值改变盐单胞菌的生理学
  • DOI:
    10.1038/s41598-025-03858-z
  • 发表时间:
    2025-06-04
  • 期刊:
  • 影响因子:
    3.900
  • 作者:
    Cassie M. Hopton;Peter Nienow;Charles S. Cockell
  • 通讯作者:
    Charles S. Cockell
The plumbing of Greenland's ice
格陵兰岛冰层的管道系统
  • DOI:
    10.1038/514038a
  • 发表时间:
    2014-10-01
  • 期刊:
  • 影响因子:
    48.500
  • 作者:
    Peter Nienow
  • 通讯作者:
    Peter Nienow
The plumbing of Greenland's ice
格陵兰岛冰层的管道系统
  • DOI:
    10.1038/514038a
  • 发表时间:
    2014-10-01
  • 期刊:
  • 影响因子:
    48.500
  • 作者:
    Peter Nienow
  • 通讯作者:
    Peter Nienow

Peter Nienow的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Peter Nienow', 18)}}的其他基金

Investigating controls on flow variability in Greenland's tidewater glaciers: the impact of runoff on fjord circulation and termini melt rates
研究格陵兰岛潮水冰川流量变化的控制:径流对峡湾环流和终点融化速率的影响
  • 批准号:
    NE/K015249/1
  • 财政年份:
    2013
  • 资助金额:
    $ 79.16万
  • 项目类别:
    Research Grant
Investigating meltwater flow beneath the Greenland Ice Sheet using a multi-tracer approach
使用多示踪剂方法研究格陵兰冰盖下方的融水流
  • 批准号:
    NE/H024964/1
  • 财政年份:
    2010
  • 资助金额:
    $ 79.16万
  • 项目类别:
    Research Grant
The role of atmospheric forcing on the dynamic stability of Greenland's outlet glaciers
大气强迫对格陵兰岛出口冰川动态稳定性的作用
  • 批准号:
    NE/F021399/1
  • 财政年份:
    2009
  • 资助金额:
    $ 79.16万
  • 项目类别:
    Research Grant

相似国自然基金

TRPV1受体在盐敏感性高血压过程中所介导的肾脏保护作用的机理研究
  • 批准号:
    81170243
  • 批准年份:
    2011
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
气体信号分子硫化氢对颈动脉窦压力反射感受器的调节作用及机制
  • 批准号:
    81100181
  • 批准年份:
    2011
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
HCN4在心房颤动肺静脉电位形成中作用的研究
  • 批准号:
    81000082
  • 批准年份:
    2010
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
Transient Receptor Potential 通道 A1在膀胱过度活动症发病机制中的作用
  • 批准号:
    30801141
  • 批准年份:
    2008
  • 资助金额:
    28.0 万元
  • 项目类别:
    青年科学基金项目
感觉神经递质CGRP通过与P物质的相互作用改善心肌缺血的机制探讨
  • 批准号:
    30801213
  • 批准年份:
    2008
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
人脐血间充质干细胞成骨潜能亚群的特异性分子标志
  • 批准号:
    30800232
  • 批准年份:
    2008
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
脂肪干细胞软骨潜能亚群的特异性分子标志
  • 批准号:
    30772264
  • 批准年份:
    2007
  • 资助金额:
    28.0 万元
  • 项目类别:
    面上项目

相似海外基金

Unlocking the potential of mini-MASS in UK waters
释放英国水域迷你 MASS 的潜力
  • 批准号:
    10109319
  • 财政年份:
    2024
  • 资助金额:
    $ 79.16万
  • 项目类别:
    Launchpad
The Rare Earth Potential of the Gascoyne Region of Western Australia
西澳大利亚加斯科因地区的稀土潜力
  • 批准号:
    LP230100173
  • 财政年份:
    2024
  • 资助金额:
    $ 79.16万
  • 项目类别:
    Linkage Projects
Identifying potential trade-offs of adapting to climate change
确定适应气候变化的潜在权衡
  • 批准号:
    DP240100230
  • 财政年份:
    2024
  • 资助金额:
    $ 79.16万
  • 项目类别:
    Discovery Projects
Human-Robot Co-Evolution: Achieving the full potential of future workplaces
人机协同进化:充分发挥未来工作场所的潜力
  • 批准号:
    DP240100938
  • 财政年份:
    2024
  • 资助金额:
    $ 79.16万
  • 项目类别:
    Discovery Projects
The effectiveness of public support for high-potential businesses
对高潜力企业的公共支持的有效性
  • 批准号:
    ES/Z50256X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 79.16万
  • 项目类别:
    Research Grant
GPR35: mechanisms of action and agonism as a potential therapeutic strategy for non-alcoholic fatty liver diseases
GPR35:作为非酒精性脂肪肝疾病潜在治疗策略的作用和激动机制
  • 批准号:
    MR/X008827/1
  • 财政年份:
    2024
  • 资助金额:
    $ 79.16万
  • 项目类别:
    Research Grant
CAREER: Transformation potential of per- and polyfluoroalkyl substances (PFAS) in drinking water distribution systems
职业:全氟烷基物质和多氟烷基物质 (PFAS) 在饮用水分配系统中的转化潜力
  • 批准号:
    2338480
  • 财政年份:
    2024
  • 资助金额:
    $ 79.16万
  • 项目类别:
    Continuing Grant
I-Corps: Translation Potential of an Objective and Customizable Concussion Assessment and Rehabilitation Tool for Specialized Populations
I-Corps:针对特殊人群的客观且可定制的脑震荡评估和康复工具的转化潜力
  • 批准号:
    2348910
  • 财政年份:
    2024
  • 资助金额:
    $ 79.16万
  • 项目类别:
    Standard Grant
I-Corps: Translation Potential of Cellulose-Nanofiber-Based Surface Agents for Enhancing Bioactive Filtration Efficiency
I-Corps:纤维素纳米纤维基表面剂在提高生物活性过滤效率方面的转化潜力
  • 批准号:
    2401619
  • 财政年份:
    2024
  • 资助金额:
    $ 79.16万
  • 项目类别:
    Standard Grant
I-Corps: Translation Potential of a Secure Data Platform Empowering Artificial Intelligence Assisted Digital Pathology
I-Corps:安全数据平台的翻译潜力,赋能人工智能辅助数字病理学
  • 批准号:
    2409130
  • 财政年份:
    2024
  • 资助金额:
    $ 79.16万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了