PAthways of Chemicals Into Freshwaters and their ecological ImpaCts (PACIFIC)

化学品进入淡水的途径及其生态影响(太平洋)

基本信息

  • 批准号:
    NE/X015890/1
  • 负责人:
  • 金额:
    $ 62.26万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2022
  • 资助国家:
    英国
  • 起止时间:
    2022 至 无数据
  • 项目状态:
    未结题

项目摘要

Manufactured chemicals are essential for the maintenance of public health, food production and quality of life, including a diverse range of pharmaceuticals, pesticides, and personal care products. The use of these compounds throughout society has led to increasing concentrations and chemodiversity in the environment. Whilst there has been focus on understanding the impacts of chemicals on a subset of freshwater biodiversity (particularly invertebrates and fish), we understand less about how chemical pollution impacts freshwater microbes. These microbial communities (the 'microbiome') number in the millions to billions of cells per millilitre of water or gram of sediment and form the most biodiverse and functionally important component of freshwater ecosystems. The biogeochemical and ecological functions delivered by freshwater microbes are essential to wider freshwater ecosystem health. The PAthways of Chemicals Into Freshwaters and their ecological ImpaCts (PACIFIC) project will focus on understanding the link between sources of anthropogenic chemicals and their pathways, fate and ecological impacts in freshwater ecosystems, with an emphasis on freshwater microbial ecosystems and the functions they perform. We will investigate the relationship between predicted diffuse and point source chemical pathways and measured chemical concentrations in water and sediments at locations across the Thames and Bristol Avon catchments, chosen to represent gradients of diffuse pollution sources. These locations will be chosen to coincide with Wastewater Treatment Works (WwTWs) to understand how sewage effluent contributes to chemical burden across these gradients. Liquid chromatography coupled with (high resolution) tandem mass spectrometry and QTOF (quadrupole Time-of-Flight) mass spectrometry will be used to perform targeted and untargeted profiling of chemical groups proven and suspected to impact freshwater ecology. A range of microbial community ecosystem endpoints will also be measured at each location to identify the impact of chemical exposure, including bacterial and fungal community composition via DNA sequencing, the expression of nutrient cycling and chemical stress and resistance genes, the production of extracellular enzymes involved with biogeochemical cycling, and the functional gene repertoire of whole microbial communities.We will perform experimental microcosm exposures on freshwater microbial communities, with increasing complexity and realism, deploying high-throughput screening to identify novel chemical groups (and their structural features) with the capacity to restructure these communities. Exemplar microbial community modifying chemicals will be investigated in more detail by applying cutting-edge molecular techniques to determine ecological exposure thresholds that represent different taxonomic and functional aspects of freshwater microbial ecosystems. Novel field based mesocosms will be used to explore wastewater exposures in more realistic, but controlled settings, allowing us to explore how chemical pollution may interact with other ecological drivers such as nutrients and temperature, and how microbial responses scale-up to higher trophic levels and alter ecosystem functioning.Spatially and temporally up-scaled models of diffuse and point source chemical pollution pathways will be combined with novel thresholds developed from the lab and field exposures, to determine chemical threats to freshwater microbes, supporting the development of tools for the better management of the risks of chemical pollution to freshwater ecosystem health. These will be combined with future hydrological, climate and socio-economic scenarios, informed by responses in our experiments, and co-developed with project collaborators, the Environment Agency, to explore future threats to microbial freshwater ecosystems and wider ecosystem health.
人造化学品对于维持公共卫生、粮食生产和生活质量至关重要,包括各种药品、农药和个人护理产品。这些化合物在整个社会的使用导致环境中的浓度和化学多样性不断增加。虽然人们一直关注化学物质对淡水生物多样性(特别是无脊椎动物和鱼类)的影响,但我们对化学污染如何影响淡水微生物了解甚少。这些微生物群落(“微生物组”)的数量为每毫升水或每克沉积物数百万至数十亿个细胞,构成淡水生态系统中生物多样性最丰富且功能最重要的组成部分。淡水微生物提供的生物地球化学和生态功能对于更广泛的淡水生态系统健康至关重要。化学品进入淡水的途径及其生态影响(PACIFIC)项目将侧重于了解人为化学品来源及其在淡水生态系统中的途径、归宿和生态影响之间的联系,重点是淡水微生物生态系统及其所发挥的功能。我们将研究预测的扩散和点源化学路径与泰晤士河和布里斯托尔雅芳流域各地的水和沉积物中测量的化学浓度之间的关系,选择代表扩散污染源的梯度。这些地点将选择与废水处理厂 (WwTW) 一致,以了解污水排放如何影响这些梯度的化学负荷。液相色谱与(高分辨率)串联质谱和 QTOF(四极杆飞行时间)质谱相结合,将用于对已证实和怀疑影响淡水生态的化学基团进行靶向和非靶向分析。还将在每个地点测量一系列微生物群落生态系统端点,以确定化学品暴露的影响,包括通过 DNA 测序确定细菌和真菌群落组成、营养循环和化学胁迫和抗性基因的表达、参与生物地球化学循环的细胞外酶的产生以及整个微生物群落的功能基因库。我们将进行实验微观世界 淡水微生物群落的暴露,随着复杂性和现实性的增加,部署高通量筛选来识别具有重组这些群落能力的新型化学基团(及其结构特征)。将通过应用尖端分子技术来更详细地研究示例性微生物群落修饰化学品,以确定代表淡水微生物生态系统不同分类和功能方面的生态暴露阈值。基于新型现场的中生态系统将用于探索更现实但受控环境中的废水暴露,使我们能够探索化学污染如何与其他生态驱动因素(如营养物和温度)相互作用,以及微生物反应如何扩大到更高的营养水平并改变生态系统功能。扩散和点源化学污染途径的空间和时间放大模型将与从 实验室和现场暴露,以确定对淡水微生物的化学威胁,支持开发工具,以更好地管理化学污染对淡水生态系统健康的风险。这些将与未来的水文、气候和社会经济情景相结合,根据我们实验中的反应提供信息,并与项目合作者环境署共同开发,以探索微生物淡水生态系统和更广泛的生态系统健康的未来威胁。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Barbara Kasprzyk-Hordern其他文献

Assessing the risk of antimicrobial resistance and potential environmental harm through national-scale surveillance of antimicrobials in hospital and community wastewater
通过对医院和社区废水中抗菌药物的国家规模监测来评估抗菌药物耐药性和潜在环境危害的风险
  • DOI:
    10.1016/j.envint.2025.109606
  • 发表时间:
    2025-08-01
  • 期刊:
  • 影响因子:
    9.700
  • 作者:
    Neil Andrew Byrnes;Reshma Silvester;Gareth Cross;Andrew J. Weightman;Davey L. Jones;Barbara Kasprzyk-Hordern
  • 通讯作者:
    Barbara Kasprzyk-Hordern
Impact of easing COVID-19 restrictions on antibiotic usage in Eastern China using wastewater-based epidemiology
利用废水流行病学研究放松新冠肺炎限制措施对中国东部地区抗生素使用的影响
  • DOI:
    10.1038/s41467-024-54498-2
  • 发表时间:
    2024-11-23
  • 期刊:
  • 影响因子:
    15.700
  • 作者:
    Jinxin Zang;Lufang Jiang;Yingying Wang;Yue Chen;Chaowei Fu;Barbara Kasprzyk-Hordern;Na Wang;Qingwu Jiang;Helen Lambert
  • 通讯作者:
    Helen Lambert
Endocrine disruptors and antimicrobial agents in an intercity study in England: Towards holistic environmental and public exposure assessment using water-based epidemiology and retrospective mass spectra data mining
英格兰一项城市间研究中的内分泌干扰物和抗菌剂:利用水流行病学和回顾性质谱数据挖掘进行全面的环境和公众暴露评估
  • DOI:
    10.1016/j.envint.2025.109534
  • 发表时间:
    2025-06-01
  • 期刊:
  • 影响因子:
    9.700
  • 作者:
    Eva Hawkins;Megan Robertson;John Bagnall;Barbara Kasprzyk-Hordern
  • 通讯作者:
    Barbara Kasprzyk-Hordern
Metagenomic profiling of hospital wastewater: A comprehensive national scale analysis of antimicrobial resistance genes and opportunistic pathogens
医院废水的宏基因组分析:抗菌耐药基因和机会性病原体的全国性综合分析
  • DOI:
    10.1016/j.jinf.2025.106503
  • 发表时间:
    2025-06-01
  • 期刊:
  • 影响因子:
    11.900
  • 作者:
    Reshma Silvester;William B. Perry;Gordon Webster;Laura Rushton;Amy Baldwin;Daniel A. Pass;Neil Andrew Byrnes;Kata Farkas;Margaret Heginbothom;Noel Craine;Gareth Cross;Peter Kille;Barbara Kasprzyk-Hordern;Andrew J. Weightman;Davey L. Jones
  • 通讯作者:
    Davey L. Jones
Estimating the consumption of prescription opioids through wastewater analysis: The patterns of use in Italy
通过废水分析估算处方类阿片的消费量:意大利的使用模式
  • DOI:
    10.1016/j.watres.2025.123938
  • 发表时间:
    2025-09-15
  • 期刊:
  • 影响因子:
    12.400
  • 作者:
    Sara Castiglioni;Noelia Salgueiro-Gonzalez;Oscar Corli;Frederic Béen;Lubertus Bijlsma;Tim Boogaerts;Barbara Kasprzyk-Hordern;João Matias;Félix Hernández;Alexander L.N. van Nuijs;Pim de Voogt;Ettore Zuccato
  • 通讯作者:
    Ettore Zuccato

Barbara Kasprzyk-Hordern的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Barbara Kasprzyk-Hordern', 18)}}的其他基金

GCRF_NF98_Building an Early Warning System for community-wide infectious disease spread: SARS-CoV-2 tracking in Africa via environment fingerprinting
GCRF_NF98_为社区范围内的传染病传播建立预警系统:通过环境指纹追踪非洲的 SARS-CoV-2
  • 批准号:
    EP/V028499/1
  • 财政年份:
    2020
  • 资助金额:
    $ 62.26万
  • 项目类别:
    Research Grant
Environment fingerprinting via digital technology - a new paradigm in hazard forecasting and early-warning systems for health risks in Africa
通过数字技术进行环境指纹识别——非洲健康风险灾害预测和预警系统的新范例
  • 批准号:
    EP/T029986/1
  • 财政年份:
    2020
  • 资助金额:
    $ 62.26万
  • 项目类别:
    Research Grant
Developing Resilient Nations - Towards a Public Heath Early Warning System via Urban Water Profiling (ReNEW)
发展有复原力的国家 - 通过城市水分析建立公共卫生预警系统 (ReNEW)
  • 批准号:
    EP/P028403/1
  • 财政年份:
    2017
  • 资助金额:
    $ 62.26万
  • 项目类别:
    Research Grant
Impact of stereochemistry of antimicrobial agents on their environmental fate, biological potency and the emergence of resistance
抗菌剂的立体化学对其环境归宿、生物效力和耐药性出现的影响
  • 批准号:
    NE/N019261/1
  • 财政年份:
    2016
  • 资助金额:
    $ 62.26万
  • 项目类别:
    Research Grant
Stereoselective degradation of chiral drugs during wastewater treatment
废水处理过程中手性药物的立体选择性降解
  • 批准号:
    EP/I038608/1
  • 财政年份:
    2012
  • 资助金额:
    $ 62.26万
  • 项目类别:
    Research Grant
Low Cost Junction Sensors for Water Quality Monitoring
用于水质监测的低成本结式传感器
  • 批准号:
    NE/I019456/1
  • 财政年份:
    2011
  • 资助金额:
    $ 62.26万
  • 项目类别:
    Training Grant
Enantioselective occurrence and fate of chiral drugs in the aqueous environment
水环境中手性药物的对映选择性发生和归宿
  • 批准号:
    NE/I000534/1
  • 财政年份:
    2011
  • 资助金额:
    $ 62.26万
  • 项目类别:
    Research Grant

相似海外基金

Converting lignin condensed structures into high-value polyaromatic hydrocarbon chemicals by controlled pyrolysis
通过受控热解将木质素缩合结构转化为高价值的多芳烃化学品
  • 批准号:
    24K17940
  • 财政年份:
    2024
  • 资助金额:
    $ 62.26万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Porous Tandem Catalyst for CO2 Conversion into Sustainable Chemicals
用于将二氧化碳转化为可持续化学品的多孔串联催化剂
  • 批准号:
    DE230100327
  • 财政年份:
    2024
  • 资助金额:
    $ 62.26万
  • 项目类别:
    Discovery Early Career Researcher Award
Upcycling Waste Polyethylene into Nylon Precursors and Platform Chemicals via A Hybrid Pyrolysis-Biomanufacturing Approach
通过混合热解-生物制造方法将废弃聚乙烯升级改造为尼龙前体和平台化学品
  • 批准号:
    2317307
  • 财政年份:
    2023
  • 资助金额:
    $ 62.26万
  • 项目类别:
    Standard Grant
Photocatalysts for Converting Plastic Wastes into Hydrogen and Chemicals
将塑料废物转化为氢气和化学品的光催化剂
  • 批准号:
    FT230100192
  • 财政年份:
    2023
  • 资助金额:
    $ 62.26万
  • 项目类别:
    ARC Future Fellowships
Catalyst design for converting carbon dioxide into valuable chemicals
将二氧化碳转化为有价值的化学品的催化剂设计
  • 批准号:
    DE230100357
  • 财政年份:
    2023
  • 资助金额:
    $ 62.26万
  • 项目类别:
    Discovery Early Career Researcher Award
Evolving cyclopropane fatty acid synthase CFAS enzymes into biocatalysts for the synthesis of cyclopropane containing drugs and chemicals
将环丙烷脂肪酸合酶 CFAS 进化为生物催化剂,用于合成含环丙烷的药物和化学品
  • 批准号:
    BB/W510178/2
  • 财政年份:
    2022
  • 资助金额:
    $ 62.26万
  • 项目类别:
    Training Grant
Hybrid nanomaterials for efficient catalytic conversion of carbon dioxide into fuels and value-added chemicals
用于将二氧化碳有效催化转化为燃料和增值化学品的混合纳米材料
  • 批准号:
    RGPIN-2018-04727
  • 财政年份:
    2022
  • 资助金额:
    $ 62.26万
  • 项目类别:
    Discovery Grants Program - Individual
Upcycling wastes into chemicals and materials
将废物升级改造为化学品和材料
  • 批准号:
    RGPIN-2021-03403
  • 财政年份:
    2022
  • 资助金额:
    $ 62.26万
  • 项目类别:
    Discovery Grants Program - Individual
Converting greenhouse gases into valuable liquid chemicals
将温室气体转化为有价值的液体化学品
  • 批准号:
    576671-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 62.26万
  • 项目类别:
    Banting Postdoctoral Fellowships Tri-council
Using ecophysiology to better predict the uptake of chemicals into fish
利用生态生理学更好地预测鱼类对化学物质的吸收
  • 批准号:
    2695320
  • 财政年份:
    2022
  • 资助金额:
    $ 62.26万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了