Hybrid nanomaterials for efficient catalytic conversion of carbon dioxide into fuels and value-added chemicals

用于将二氧化碳有效催化转化为燃料和增值化学品的混合纳米材料

基本信息

  • 批准号:
    RGPIN-2018-04727
  • 负责人:
  • 金额:
    $ 1.75万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

Carbon dioxide is the most abundant greenhouse gas contributing to global warming. Efforts to mitigate the atmospheric levels of carbon dioxide need to be intensified in order to prevent mass ecological disasters. Carbon utilization the technology where carbon dioxide in the atmosphere or from industrial plants is directly converted into useful products such as fuels, pharmaceuticals and polymers is a rapidly growing field, which increases the economic incentive towards carbon mitigation strategies and bypasses the need for fossil fuels. Central to effective carbon utilization is the activation of the carbon dioxide molecule towards further reaction. This can be achieved using nanoelectrocatalysis a technology, which combines the unique catalytic properties of nanomaterials with electrical energy input to sustainably generate valuable products.To this end, we aim to synergistically develop hybrid organic-metal nanocatalysts and reaction processes, integrating them with a state of the art electrochemical flow cell reactor with a gas diffusion working electrode, which has been underexplored in the carbon dioxide reduction field. This cell and electrode design significantly increases CO2 availability, overcoming its solubility and mass transport limitations present in traditional electrochemical cells, and is a promising platform to achieve high reaction selectivity, current densities, and current efficiencies. Combining this platform with rationally designed stable, selective, and efficient electrocatalysts has the potential to achieve the system performance advances that would make this technology suitable for industrial implementation. Additionally, by studying how specific nanocatalyst features including shape, surface chemistry, chirality and material impact catalytic reaction parameters, we will obtain guiding principles for future catalyst design and bring new strategies in materials science to generate efficient catalysts for other important catalytic processes. Our work will yield new catalytic materials, platforms, and processes to effectively transform excess carbon dioxide into fuels, chemical feedstocks, and pharmaceuticals while providing a deeper mechanistic understanding of mechanisms of electrocatalytic reactions on nanocatalysts. Ultimately, this will spark innovations in carbon dioxide chemistry while providing a stronger incentive for the capture of emissions at the source and in the atmosphere. This research program in one of the most exciting fields in STEM will launch the careers of budding scientists while contributing a solution to a crucial and pressing global problem.
二氧化碳是导致全球变暖的最丰富的温室气体。必须加紧努力降低大气中的二氧化碳含量,以防止大规模生态灾难。碳利用将大气中或工业工厂中的二氧化碳直接转化为燃料、药品和聚合物等有用产品的技术是一个快速发展的领域,它增加了对碳减排战略的经济激励,并绕过了对化石燃料的需求。有效利用碳的核心是活化二氧化碳分子进行进一步反应。这可以通过纳米电催化技术来实现,该技术将纳米材料的独特催化性能与电能输入相结合,可持续地产生有价值的产品。为此,我们的目标是协同开发混合有机金属纳米催化剂和反应过程,将其与最先进的电化学流动电池反应器(带有气体扩散工作电极)相结合,其在二氧化碳减少领域中尚未充分探索。这种电池和电极设计显著提高了CO2的可用性,克服了传统电化学电池中存在的溶解度和传质限制,并且是实现高反应选择性、电流密度和电流效率的有前途的平台。将该平台与合理设计的稳定,选择性和高效的电催化剂相结合,有可能实现系统性能的进步,使该技术适合工业应用。此外,通过研究特定的纳米催化剂特征,包括形状,表面化学,手性和材料如何影响催化反应参数,我们将获得未来催化剂设计的指导原则,并为材料科学带来新的策略,为其他重要的催化过程产生有效的催化剂。我们的工作将产生新的催化材料,平台和工艺,以有效地将过量的二氧化碳转化为燃料,化学原料和药物,同时提供对纳米催化剂上电催化反应机制的更深入的机械理解。最终,这将激发二氧化碳化学的创新,同时为在源头和大气中捕获排放提供更强的激励。这项在STEM最令人兴奋的领域之一的研究计划将启动初露头角的科学家的职业生涯,同时为解决一个关键而紧迫的全球问题做出贡献。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Klinkova, Anna其他文献

Sustainable at both ends: electrochemical CO2utilization paired with electrochemical treatment of nitrogenous waste
  • DOI:
    10.1039/d0gc01754j
  • 发表时间:
    2020-07-21
  • 期刊:
  • 影响因子:
    9.8
  • 作者:
    Medvedeva, Xenia, V;Medvedev, Jury J.;Klinkova, Anna
  • 通讯作者:
    Klinkova, Anna
Shape-Dependent Interactions of Palladium Nanocrystals with Hydrogen
  • DOI:
    10.1002/smll.201600015
  • 发表时间:
    2016-05-11
  • 期刊:
  • 影响因子:
    13.3
  • 作者:
    Klinkova, Anna;Cherepanov, Pavel V.;Kumacheva, Eugenia
  • 通讯作者:
    Kumacheva, Eugenia
Structural transitions in nanoparticle assemblies governed by competing nanoscale forces.
  • DOI:
    10.1021/ja404341r
  • 发表时间:
    2013-07-17
  • 期刊:
  • 影响因子:
    15
  • 作者:
    Choueiri, Rachelle M.;Klinkova, Anna;Therien-Aubin, Heloise;Rubinstein, Michael;Kumacheva, Eugenia
  • 通讯作者:
    Kumacheva, Eugenia
Nickel-Catalyzed Urea Electrolysis: From Nitrite and Cyanate as Major Products to Nitrogen Evolution
  • DOI:
    10.1002/anie.202209839
  • 发表时间:
    2022-08-23
  • 期刊:
  • 影响因子:
    16.6
  • 作者:
    Tatarchuk, Stephen W.;Medvedev, Jury J.;Klinkova, Anna
  • 通讯作者:
    Klinkova, Anna
Colloidal cholesteric liquid crystal in spherical confinement.
  • DOI:
    10.1038/ncomms12520
  • 发表时间:
    2016-08-26
  • 期刊:
  • 影响因子:
    16.6
  • 作者:
    Li, Yunfeng;Suen, Jeffrey Jun-Yan;Prince, Elisabeth;Larin, Egor M.;Klinkova, Anna;Therien-Aubin, Heloise;Zhu, Shoujun;Yang, Bai;Helmy, Amr S.;Lavrentovich, Oleg D.;Kumacheva, Eugenia
  • 通讯作者:
    Kumacheva, Eugenia

Klinkova, Anna的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Klinkova, Anna', 18)}}的其他基金

Hybrid nanomaterials for efficient catalytic conversion of carbon dioxide into fuels and value-added chemicals
用于将二氧化碳有效催化转化为燃料和增值化学品的混合纳米材料
  • 批准号:
    RGPIN-2018-04727
  • 财政年份:
    2021
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Hybrid nanomaterials for efficient catalytic conversion of carbon dioxide into fuels and value-added chemicals
用于将二氧化碳有效催化转化为燃料和增值化学品的混合纳米材料
  • 批准号:
    RGPIN-2018-04727
  • 财政年份:
    2020
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Hybrid nanomaterials for efficient catalytic conversion of carbon dioxide into fuels and value-added chemicals
用于将二氧化碳有效催化转化为燃料和增值化学品的混合纳米材料
  • 批准号:
    RGPIN-2018-04727
  • 财政年份:
    2019
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Hybrid nanomaterials for efficient catalytic conversion of carbon dioxide into fuels and value-added chemicals
用于将二氧化碳有效催化转化为燃料和增值化学品的混合纳米材料
  • 批准号:
    DGECR-2018-00283
  • 财政年份:
    2018
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Launch Supplement
Hybrid nanomaterials for efficient catalytic conversion of carbon dioxide into fuels and value-added chemicals
用于将二氧化碳有效催化转化为燃料和增值化学品的混合纳米材料
  • 批准号:
    RGPIN-2018-04727
  • 财政年份:
    2018
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Experimental Platform for Qualitative and Quantitative Analysis of Carbon Dioxide Electroreduction products
二氧化碳电还原产物定性定量分析实验平台
  • 批准号:
    RTI-2018-00166
  • 财政年份:
    2017
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Research Tools and Instruments

相似海外基金

ERASE-PFAS: Exploring efficient pilot-scale treatment of per- and polyfluoroalkyl substances and comingled chlorinated solvents in groundwater using magnetic nanomaterials
ERASE-PFAS:探索使用磁性纳米材料对地下水中的全氟烷基物质和多氟烷基物质以及混合氯化溶剂进行有效的中试规模处理
  • 批准号:
    2305729
  • 财政年份:
    2023
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Standard Grant
Efficient Bioremediation of Environmentally Persistent Contaminants with Nanomaterial-Fungus Framework (NFF)
利用纳米材料-真菌框架 (NFF) 对环境持久性污染物进行高效生物修复
  • 批准号:
    10157811
  • 财政年份:
    2021
  • 资助金额:
    $ 1.75万
  • 项目类别:
Efficient Bioremediation of Environmentally Persistent Contaminants with Nanomaterial-Fungus Framework (NFF)
利用纳米材料-真菌框架 (NFF) 对环境持久性污染物进行高效生物修复
  • 批准号:
    10521287
  • 财政年份:
    2021
  • 资助金额:
    $ 1.75万
  • 项目类别:
Floating Recyclable Nanomaterials for Efficient Solar-driven Photocatalytic Reforming of Biomass and Waste Plastic to Hydrogen Fuel
浮动可回收纳米材料用于高效太阳能光催化将生物质和废塑料转化为氢燃料
  • 批准号:
    545773-2020
  • 财政年份:
    2021
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Postdoctoral Fellowships
Efficient Bioremediation of Environmentally Persistent Contaminants with Nanomaterial-Fungus Framework (NFF)
利用纳米材料-真菌框架 (NFF) 对环境持久性污染物进行高效生物修复
  • 批准号:
    10320970
  • 财政年份:
    2021
  • 资助金额:
    $ 1.75万
  • 项目类别:
Hybrid nanomaterials for efficient catalytic conversion of carbon dioxide into fuels and value-added chemicals
用于将二氧化碳有效催化转化为燃料和增值化学品的混合纳米材料
  • 批准号:
    RGPIN-2018-04727
  • 财政年份:
    2021
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Architectural Nanomaterials for Ergonomic and Energy-Efficient Windows and Buildings
用于符合人体工程学和节能窗户和建筑的建筑纳米材料
  • 批准号:
    553286-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
Floating Recyclable Nanomaterials for Efficient Solar-driven Photocatalytic Reforming of Biomass and Waste Plastic to Hydrogen Fuel
浮动可回收纳米材料用于高效太阳能光催化将生物质和废塑料转化为氢燃料
  • 批准号:
    545773-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Postdoctoral Fellowships
Hybrid nanomaterials for efficient catalytic conversion of carbon dioxide into fuels and value-added chemicals
用于将二氧化碳有效催化转化为燃料和增值化学品的混合纳米材料
  • 批准号:
    RGPIN-2018-04727
  • 财政年份:
    2020
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Non-Invasive Prenatal Diagnostics Based on Circulating Trophoblasts
基于循环滋养细胞的无创产前诊断
  • 批准号:
    10675005
  • 财政年份:
    2019
  • 资助金额:
    $ 1.75万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了