Nuclear structure in extremely exotic systems explored by laser spectroscopy of pure ion beams.
通过纯离子束激光光谱探索极其奇异的系统中的核结构。
基本信息
- 批准号:ST/I004726/1
- 负责人:
- 金额:$ 53.61万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Fellowship
- 财政年份:2011
- 资助国家:英国
- 起止时间:2011 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Atomic nuclei form the fundamental building blocks for most of what we see around us. Understanding the quantum arrangement of protons and neutrons within the nucleus, their stability, the nature of the forces which hold them together and even how the elements were formed in the universe are the subject of nuclear structure research. Surrounding the nucleus, orbiting electrons occupy quantum 'shelves' at discrete energies, with an arrangement largely dependent upon the proton number (ie. element) under study. However, on a hyperfine level, these energy levels move and split as a result of changing nuclear properties such as size, shape, magnetization and quantum spin as neutrons are added to create different isotopes. Precision lasers can be used to excite electrons between these levels to reveal such properties. To more fully understand the nature of the nuclear forces we need to know how nuclear properties change for exotic nuclei with unnatural combinations of proton and neutron numbers (Z and N). Such nuclei may live for less than a millisecond. Produced with a distribution in N and Z from nuclear reactions at 'isotope factories', they are electrostatically transported as a beam of ions to a station for spectroscopy. A specific mass (N+Z) is selected using in-flight magnetic deflection, but how can we choose a single element? The isotope (N,Z) we wish to study may be a part per million of the total beam selected by mass only. A few sheep would be hard to see in a field of a million goats. New international facilities aim to produce more, but will not fulfill their potential if they produce more of both. This is a long standing problem in nuclear physics research. To a laser beam, quantum electron levels provide a fingerprint for each element. At a characteristic frequency of light, the electrons are excited between levels in one element alone. Moreover, a combination of laser beams and excitation steps will remove an additional electron altogether. A bunch of ions (released from a trap, with ample time to interact with the laser) with two electrons removed from their neutral atomic state rather than one, and therefore twice the charge, will travel to the spectroscopy station faster under electrostatic acceleration. Arriving earlier, only nuclei of a single N and Z will be present, and other combinations (all arriving later) kicked away. Using a laser to study (as well as purify) the beam of nuclei reveals all the properties above by detecting photons emitted by electrons relaxing back after excitation as a function of frequency. Purification will allow lasers to study nuclei which are produced at a rate of less than one per second (compared with 1000/s required today), and irrespective of what other elements with isotopes of the same mass are present. Within the nucleus, neutrons and protons each occupy their own quantum shelves, lying at discrete energies. These are filled sequentially, and the interaction between nucleons raises or lowers their energy as the levels are filled. Level migrations, the consequent changes to the energy gaps between them or even a reordering, fundamentally affect the nuclear properties. These measurements will provide a sensitive probe of species far from stability in order to understand nuclear interactions. Lying at the corner stone of the natural (and unnatural) world nuclear science finds applications beyond its chapter. It has long been suspected that thorium-229 contains an isomer - that is, a nuclear state excited in energy which lives at least momentarily. If observed, this would have the lowest energy of any seen in nature and could be the first demonstration of nuclear excitation with a laser. Considerable interest has been gathered to use the isomer as an accurate clock (from an oscillating nuclear transition), testing Einstein's theory of relativity and how constant the fundamental physical constants really are - one of the greatest unanswered problems in physics.
原子核构成了我们周围所看到的大多数东西的基本构件。了解质子和中子在原子核内的量子排列、它们的稳定性、将它们聚集在一起的力的性质,甚至是这些元素在宇宙中是如何形成的,都是核结构研究的主题。在原子核周围,轨道电子以离散的能量占据量子“架”,其排列在很大程度上取决于质子数(即。元素)正在研究中。然而,在超精细水平上,这些能级的移动和分裂是由于添加中子以产生不同的同位素而改变核属性,如大小、形状、磁化和量子自旋。精密激光可以用来激发这些能级之间的电子,以揭示这样的性质。为了更全面地了解核力的性质,我们需要知道质子和中子数(Z和N)的非自然组合的奇异核的核性质是如何变化的。这样的原子核的寿命可能不到一毫秒。它们是在“同位素工厂”的核反应中以N和Z的分布产生的,通过静电将其作为一束离子束输送到光谱分析站。使用飞行中的磁偏转选择特定质量(N+Z),但我们如何选择单个元素?我们想要研究的同位素(N,Z)可能只是按质量选择的总束流的百万分之一。在一百万只山羊的田野里,很难看到几只绵羊。新的国际设施旨在生产更多产品,但如果两者都生产更多,就不会发挥其潜力。这是核物理研究中一个长期存在的问题。对于一束激光,量子电子能级提供了每种元素的指纹。在光的特征频率下,电子仅在一种元素的能级之间被激发。此外,激光和激发步骤的组合将完全消除一个额外的电子。一束离子(从陷阱释放,有充足的时间与激光相互作用),其中两个电子从中性原子态而不是一个电子移出,因此电荷是中性原子态的两倍,在静电加速下,离子将更快地到达光谱站。较早到达时,只会出现一个N和Z的原子核,而其他组合(都是较晚到达的)将被踢开。使用激光来研究(以及提纯)原子核光束,通过检测激发后弛豫回来的电子发出的光子作为频率的函数,揭示了上述所有性质。提纯将允许激光研究以低于每秒一个的速度产生的原子核(目前需要1000/S),而不考虑存在哪些具有相同质量的同位素的其他元素。在原子核内部,中子和质子各自占据各自的量子架子,处于离散能量状态。这些粒子是按顺序填充的,核子之间的相互作用会随着能级的填充而提高或降低它们的能量。能级迁移,即由此引起的它们之间的能量差距的变化,甚至重新排序,从根本上影响着核的性质。这些测量将为了解核相互作用提供一个远离稳定性的物种的灵敏探测器。核科学位于自然(和非自然)世界的基石上,它的应用超出了它的范围。长期以来,人们一直怀疑钍-229含有一种异构体--即一种以能量激发的核态,至少是暂时存在的。如果观察到,这将是自然界中能量最低的一次,可能是第一次用激光进行核激发的演示。人们有相当大的兴趣将异构体用作精确的时钟(来自振荡的原子核跃迁),测试爱因斯坦的相对论,以及基本物理常数到底有多恒定--这是物理学中最大的悬而未决的问题之一。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Nuclear mean-square charge radii of 63 , 64 , 66 , 68 - 82 Ga nuclei: No anomalous behavior at N = 32
63 、 64 、 66 、 68 - 82 Ga 原子核的核均方电荷半径:N = 32 时无异常行为
- DOI:10.1103/physrevc.86.034329
- 发表时间:2012
- 期刊:
- 影响因子:3.1
- 作者:Procter T
- 通讯作者:Procter T
Laser spectroscopy of radioactive isotopes: Role and limitations of accurate isotope-shift calculations
- DOI:10.1103/physreva.86.042501
- 发表时间:2012-10-01
- 期刊:
- 影响因子:2.9
- 作者:Cheal, B.;Cocolios, T. E.;Fritzsche, S.
- 通讯作者:Fritzsche, S.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bradley Cheal其他文献
Smooth trends in fermium charge radii and the impact of shell effects
镄电荷半径的平滑趋势及壳层效应的影响
- DOI:
10.1038/s41586-024-08062-z - 发表时间:
2024-10-30 - 期刊:
- 影响因子:48.500
- 作者:
Jessica Warbinek;Elisabeth Rickert;Sebastian Raeder;Thomas Albrecht-Schönzart;Brankica Andelic;Julian Auler;Benjamin Bally;Michael Bender;Sebastian Berndt;Michael Block;Alexandre Brizard;Pierre Chauveau;Bradley Cheal;Premaditya Chhetri;Arno Claessens;Antoine de Roubin;Charlie Devlin;Holger Dorrer;Christoph E. Düllmann;Julie Ezold;Rafael Ferrer;Vadim Gadelshin;Alyssa Gaiser;Francesca Giacoppo;Stephane Goriely;Manuel J. Gutiérrez;Ashley Harvey;Raphael Hasse;Reinhard Heinke;Fritz-Peter Heßberger;Stephane Hilaire;Magdalena Kaja;Oliver Kaleja;Tom Kieck;EunKang Kim;Nina Kneip;Ulli Köster;Sandro Kraemer;Mustapha Laatiaoui;Jeremy Lantis;Nathalie Lecesne;Andrea Tzeitel Loria Basto;Andrew Kishor Mistry;Christoph Mokry;Iain Moore;Tobias Murböck;Danny Münzberg;Witold Nazarewicz;Thorben Niemeyer;Steven Nothhelfer;Sophie Péru;Andrea Raggio;Paul-Gerhard Reinhard;Dennis Renisch;Emmanuel Rey-Herme;Jekabs Romans;Elisa Romero Romero;Jörg Runke;Wouter Ryssens;Hervé Savajols;Fabian Schneider;Joseph Sperling;Matou Stemmler;Dominik Studer;Petra Thörle-Pospiech;Norbert Trautmann;Mitzi Urquiza-González;Kenneth van Beek;Shelley Van Cleve;Piet Van Duppen;Marine Vandebrouck;Elise Verstraelen;Thomas Walther;Felix Weber;Klaus Wendt - 通讯作者:
Klaus Wendt
High-resolution laser spectroscopy of singly charged natural uranium isotopes
单电荷天然铀同位素的高分辨率激光光谱学
- DOI:
10.1038/s41598-024-76975-w - 发表时间:
2024-10-27 - 期刊:
- 影响因子:3.900
- 作者:
Andrea Raggio;Michael Block;Paul Campbell;Bradley Cheal;Ruben P. de Groote;Wouter Gins;Ágota Koszorús;Iain D. Moore;Alejandro Ortiz-Cortes;Ilkka Pohjalainen;Jessica Warbinek - 通讯作者:
Jessica Warbinek
Bradley Cheal的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bradley Cheal', 18)}}的其他基金
Nuclear structure in extremely exotic systems explored by laser spectroscopy of pure ion beams.
通过纯离子束激光光谱探索极其奇异的系统中的核结构。
- 批准号:
ST/I004726/2 - 财政年份:2013
- 资助金额:
$ 53.61万 - 项目类别:
Fellowship
相似国自然基金
Rh-N4位点催化醇类氧化反应的微观机制与构效关系研究
- 批准号:22302208
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
体内亚核小体图谱的绘制及其调控机制研究
- 批准号:32000423
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
CTCF/cohesin介导的染色质高级结构调控DNA双链断裂修复的分子机制研究
- 批准号:32000425
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
异染色质修饰通过调控三维基因组区室化影响机体应激反应的分子机制
- 批准号:31970585
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
多层次纳米叠层块体复合材料的仿生设计、制备及宽温域增韧研究
- 批准号:51973054
- 批准年份:2019
- 资助金额:60.0 万元
- 项目类别:面上项目
骨髓间充质干细胞成骨成脂分化过程中染色质三维构象改变与转录调控分子机制研究
- 批准号:31960136
- 批准年份:2019
- 资助金额:40.0 万元
- 项目类别:地区科学基金项目
染色质三维结构等位效应的亲代传递研究
- 批准号:31970586
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
染色质三维构象新型调控因子的机制研究
- 批准号:31900431
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
转座因子调控多能干细胞染色质三维结构中的作用
- 批准号:31970589
- 批准年份:2019
- 资助金额:60.0 万元
- 项目类别:面上项目
磷酸化和可变剪切修饰影响Bnip3调控线粒体自噬和细胞凋亡的结构及功能研究
- 批准号:31670742
- 批准年份:2016
- 资助金额:60.0 万元
- 项目类别:面上项目
相似海外基金
CAREER: Advancing Efficient Global Optimization of Extremely Expensive Functions under Uncertainty using Structure-Exploiting Bayesian Methods
职业:使用结构利用贝叶斯方法在不确定性下推进极其昂贵的函数的高效全局优化
- 批准号:
2237616 - 财政年份:2023
- 资助金额:
$ 53.61万 - 项目类别:
Continuing Grant
Planning the VICTORY (VIsual ComplicaTions Of PrematuRitY) Study
规划 VICTORY(早产儿视觉并发症)研究
- 批准号:
10645471 - 财政年份:2023
- 资助金额:
$ 53.61万 - 项目类别:
Novel non-invasive approach for predicting retinopathy of prematurity in premature neonates
预测早产儿视网膜病变的新型非侵入性方法
- 批准号:
10665438 - 财政年份:2023
- 资助金额:
$ 53.61万 - 项目类别:
Ultra-low-temperature (6 K) static NMR-DNP for metalloproteins, proteins in cells, and materials
用于金属蛋白、细胞中蛋白质和材料的超低温 (6 K) 静态 NMR-DNP
- 批准号:
10546201 - 财政年份:2023
- 资助金额:
$ 53.61万 - 项目类别:
Trajectories of Regional Cardiopulmonary Structure and Function in A Longitudinal Cohort of Extremely Preterm Infants
极早产儿纵向队列的区域心肺结构和功能轨迹
- 批准号:
10656624 - 财政年份:2023
- 资助金额:
$ 53.61万 - 项目类别:
Machine Learning Risk Prediction of Kidney Disease After Extremely Preterm Birth
机器学习对极早产后肾脏疾病的风险预测
- 批准号:
10589356 - 财政年份:2023
- 资助金额:
$ 53.61万 - 项目类别:
Novel Small Molecule Drug Candidate for the Prevention of Bronchopulmonary Dysplasia
预防支气管肺发育不良的新型小分子候选药物
- 批准号:
10698418 - 财政年份:2023
- 资助金额:
$ 53.61万 - 项目类别:
The determination of the structure and evolution of terrestrial and planetary materials using experiments on reactions at high-pressure, high-temperature, and extremely short times
利用高压、高温和极短时间反应实验确定陆地和行星材料的结构和演化
- 批准号:
23H01277 - 财政年份:2023
- 资助金额:
$ 53.61万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Miniaturization of the Artificial Placenta for Clinical Application
人工胎盘的小型化临床应用
- 批准号:
10428747 - 财政年份:2022
- 资助金额:
$ 53.61万 - 项目类别: