Waves and Flows: Linking the Solar Photosphere to the Corona
波与流:将太阳光球层与日冕联系起来
基本信息
- 批准号:ST/K004220/1
- 负责人:
- 金额:$ 51.74万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Fellowship
- 财政年份:2013
- 资助国家:英国
- 起止时间:2013 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The Sun is one of the most important objects for humankind, with solar activity driving "space weather" and having a profound effect on the Earth's environment. We can directly see the effects of the Sun's powerful radiation through fascinating sights on Earth, such as the aurora borealis. However, it was the paradoxical nature of our Sun's temperature structure that first captivated my attention. One of the greatest scientific problems plaguing physicists is the fact that the outer atmosphere of our Sun is much hotter than its surface. Common sense leads us to believe that the local temperature will decrease as we move away from the Sun's 6000 K surface temperature. However, the corona, an atmospheric layer a few thousand km above the surface, radiates with a temperature exceeding one million degrees. Efforts to understand the heating processes responsible have remained at the forefront of observational and theoretical research for over 50 years, producing a popular class of theory known as wave heating. This mechanism suggests that waves, generated near the solar surface through the continual churning of plasma, propagate upwards, ultimately dissipating their energy and heating the Sun's outer atmosphere. A good analogy is to envisage ocean waves that travel vast distances across the sea before crashing on to shorelines, ultimately releasing immense quantities of energy in the process. However, the solar atmosphere is highly magnetic in nature. Magnetic field strengths often exceed 0.3 Tesla (similar in strength to modern open MRI scanners found in hospitals), resulting in wave modes becoming highly modified, and producing magneto-hydrodynamic (MHD) phenomena.It is my desire to help improve our understanding of the physical processes at work within the Sun's atmosphere, an object that is so influential to life on Earth. A natural consequence of understanding the effects of solar magnetism will be the ability to predict solar activity, something that will ultimately allow us to protect ourselves from fierce outbursts of space weather. To pursue this crucial agenda, we need to observe and model the processes occurring in the Sun's atmosphere on their intrinsic scales. The UK has recently benefitted from a new breed of high-resolution solar instrumentation, including the Rapid Oscillations in the Solar Atmosphere (ROSA), Solar Dynamics Observatory (SDO), Hinode, and IRIS facilities, which will allow for the first time fundamental processes associated with the release of magnetic energy to be studied at an unprecedented level of detail. As an STFC Fellow, I will use modern ground- and space-based telescopes containing a wide assortment of high-resolution imaging and spectroscopic instrumentation. The observational component of my research will focus on the distinction of individual MHD waves, allowing key characteristics to be evaluated. These include the modes of oscillation (longitudinal, transverse, etc.), velocities, plasma densities, and temperatures, which can be combined to provide detailed energy estimates. The rate at which energy is dissipated will be compared to the heating requirements of the corona, with the exact role waves play in the heating of the Sun's corona unequivocally determined. Fundamental parameters deduced from high-resolution observations will be incorporated into advanced computer simulations. Large computer clusters, with 200+ CPUs, will be used to examine the 3D effects of waves on magnetic fields which intertwine the entire solar atmosphere. Characteristics associated with the waves will be studied in simulated solar structures, with forward modelling techniques implemented to allow direct comparisons with the physical observations to be undertaken, culminating in much refined heating models of the solar atmosphere. With the rapid advancements made in the field of solar physics over the last number of years, the ability to finally resolve the atmospheric heating paradox is now a reality.
太阳是人类最重要的天体之一,太阳活动推动着“空间天气”,并对地球环境产生深远影响。我们可以通过地球上引人入胜的景象,如北极光,直接看到太阳强大辐射的影响。然而,正是太阳温度结构的矛盾性质第一次吸引了我的注意。困扰物理学家的最大科学问题之一是,太阳的外层大气比其表面热得多。常识使我们相信,当我们远离太阳6000K的表面温度时,当地的温度将会下降。然而,日冕,地表上方几千公里的大气层,辐射温度超过一百万度。50多年来,理解加热过程的努力一直处于观测和理论研究的前沿,产生了一种被称为波加热的流行理论。这一机制表明,通过等离子体的持续搅动在太阳表面附近产生的波向上传播,最终耗散它们的能量并加热太阳的外层大气。一个很好的类比是设想海浪在撞击海岸线之前穿过海洋,最终在这个过程中释放出大量的能量。然而,太阳大气本质上是高度磁性的。磁场强度经常超过0.3特斯拉(强度类似于医院中发现的现代开放式核磁共振扫描仪),导致波模式变得高度修改,并产生磁流体动力学(MHD)现象。我的愿望是帮助我们更好地理解太阳大气层中工作的物理过程,太阳大气层是一个对地球生命如此有影响的天体。了解太阳磁力的影响的一个自然结果将是预测太阳活动的能力,这最终将使我们能够保护自己免受猛烈的太空天气爆发的影响。为了推进这一至关重要的议程,我们需要观察太阳大气中发生的内在尺度的过程并对其进行建模。英国最近受益于一种新型的高分辨率太阳仪器,包括太阳大气中的快速振荡(ROSA)、太阳动力学天文台(SDO)、Hinode和IRIS设施,这将首次使人们能够以前所未有的详细程度研究与磁能释放有关的基本过程。作为一名STFC成员,我将使用现代地面和天基望远镜,其中包括各种高分辨率成像和光谱仪器。我的研究的观测部分将集中在单个MHD波的区别上,以便评估关键特征。其中包括振荡模式(纵向、横向等)、速度、等离子体密度和温度,它们可以结合在一起提供详细的能量估计。能量的耗散率将与日冕的加热需求进行比较,明确确定波在太阳日冕加热中所起的作用。从高分辨率观测得出的基本参数将被纳入先进的计算机模拟。拥有200多个CPU的大型计算机集群将被用来研究波对交织在整个太阳大气中的磁场的3D效果。将在模拟的太阳结构中研究与波浪有关的特征,并采用正演模拟技术,以便与将要进行的物理观测进行直接比较,最终得到更加精确的太阳大气加热模型。随着过去几年来太阳物理领域的快速发展,最终解决大气加热悖论的能力现在已经成为现实。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
High-frequency Waves in Chromospheric Spicules
- DOI:10.3847/1538-4357/ac5c53
- 发表时间:2022-03
- 期刊:
- 影响因子:0
- 作者:W. Bate;D. Jess;V. Nakariakov;S. Grant;S. Jafarzadeh;M. Stangalini;P. Keys;D. Christian;
- 通讯作者:W. Bate;D. Jess;V. Nakariakov;S. Grant;S. Jafarzadeh;M. Stangalini;P. Keys;D. Christian;
WAVE DAMPING OBSERVED IN UPWARDLY PROPAGATING SAUSAGE-MODE OSCILLATIONS CONTAINED WITHIN A MAGNETIC PORE
- DOI:10.1088/0004-637x/806/1/132
- 发表时间:2015-06-10
- 期刊:
- 影响因子:4.9
- 作者:Grant, S. D. T.;Jess, D. B.;Erdelyi, R.
- 通讯作者:Erdelyi, R.
Characterization of shock wave signatures at millimetre wavelengths from Bifrost simulations.
Bifrost 模拟中毫米波长冲击波特征的表征。
- DOI:10.1098/rsta.2020.0185
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Eklund H
- 通讯作者:Eklund H
H a AND EUV OBSERVATIONS OF A PARTIAL CME
部分 CME 的 H a 和 EUV 观测
- DOI:10.1088/0004-637x/804/2/147
- 发表时间:2015
- 期刊:
- 影响因子:0
- 作者:Christian D
- 通讯作者:Christian D
HEATING MECHANISMS FOR INTERMITTENT LOOPS IN ACTIVE REGION CORES FROM AIA/ SDO EUV OBSERVATIONS
来自 AIA/SDO EUV 观测的活动区域核心间歇循环的加热机制
- DOI:10.1088/0004-637x/795/1/48
- 发表时间:2014
- 期刊:
- 影响因子:0
- 作者:Cadavid A
- 通讯作者:Cadavid A
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David Jess其他文献
David Jess的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David Jess', 18)}}的其他基金
PATT Travel Grant for observational astrophysics at Queen's University Belfast (2023 - 2025)
PATT 贝尔法斯特女王大学观测天体物理学旅行补助金(2023 - 2025)
- 批准号:
ST/X005526/1 - 财政年份:2023
- 资助金额:
$ 51.74万 - 项目类别:
Research Grant
PATT Travel Grant for observational astrophysics at QUB: 2020 - 2022
PATT 昆士兰大学观测天体物理学旅行补助金:2020 - 2022
- 批准号:
ST/V00199X/1 - 财政年份:2021
- 资助金额:
$ 51.74万 - 项目类别:
Research Grant
PATT Travel Grant for observational astrophysics at QUB: 2018 - 2020
PATT 昆士兰大学观测天体物理学旅行补助金:2018 - 2020
- 批准号:
ST/S001298/1 - 财政年份:2018
- 资助金额:
$ 51.74万 - 项目类别:
Research Grant
Nanoflares: Explosive Heating of our Sun's Atmosphere
纳米耀斑:太阳大气的爆炸性加热
- 批准号:
ST/L002744/1 - 财政年份:2014
- 资助金额:
$ 51.74万 - 项目类别:
Research Grant
Pushing the Boundaries: Solar Physics in an Era of High Spatial and Temporal Resolution
突破界限:高时空分辨率时代的太阳物理学
- 批准号:
ST/G004986/1 - 财政年份:2009
- 资助金额:
$ 51.74万 - 项目类别:
Fellowship
相似海外基金
Computing Lagrangian means in multi-timescale fluid flows
计算多时间尺度流体流动中的拉格朗日均值
- 批准号:
EP/Y021479/1 - 财政年份:2024
- 资助金额:
$ 51.74万 - 项目类别:
Research Grant
MHDSSP: Self-sustaining processes and edge states in magnetohydrodynamic flows subject to rotation and shear
MHDSSP:受到旋转和剪切作用的磁流体动力流中的自持过程和边缘状态
- 批准号:
EP/Y029194/1 - 财政年份:2024
- 资助金额:
$ 51.74万 - 项目类别:
Fellowship
Collaborative Research: GEM--Multi-scale Magnetosphere-Ionosphere-Thermosphere Coupling Dynamics Driven by Bursty Bulk Flows
合作研究:GEM——突发体流驱动的多尺度磁层-电离层-热层耦合动力学
- 批准号:
2349872 - 财政年份:2024
- 资助金额:
$ 51.74万 - 项目类别:
Standard Grant
Conference: Geometric Flows and Relativity
会议:几何流和相对论
- 批准号:
2348273 - 财政年份:2024
- 资助金额:
$ 51.74万 - 项目类别:
Standard Grant
Conference: St. Louis Topology Conference: Flows and Foliations in 3-Manifolds
会议:圣路易斯拓扑会议:3 流形中的流动和叶理
- 批准号:
2350309 - 财政年份:2024
- 资助金额:
$ 51.74万 - 项目类别:
Standard Grant
Mesh-free methods for turbulent reacting flows: the next generation of DNS
用于湍流反应流的无网格方法:下一代 DNS
- 批准号:
EP/W005247/2 - 财政年份:2024
- 资助金额:
$ 51.74万 - 项目类别:
Research Grant
SUPERSLUG: Deconstructing sediment superslugs as a legacy of extreme flows
SUPERSLUG:解构沉积物超级段塞作为极端流动的遗产
- 批准号:
NE/Z00022X/1 - 财政年份:2024
- 资助金额:
$ 51.74万 - 项目类别:
Research Grant
CAREER: Turbulence-Resolving Integral Simulations for Boundary Layer Flows
职业:边界层流的湍流求解积分模拟
- 批准号:
2340121 - 财政年份:2024
- 资助金额:
$ 51.74万 - 项目类别:
Continuing Grant
A reliable approach for the characterization of biologically-relevant cardiovascular flows
表征生物学相关心血管血流的可靠方法
- 批准号:
2908744 - 财政年份:2024
- 资助金额:
$ 51.74万 - 项目类别:
Studentship
ERI: Experimental Investigation of Compressibility Effects on Turbulent Kinetic Energy Production in Supersonic Flows
ERI:压缩性对超音速流中湍动能产生的影响的实验研究
- 批准号:
2347416 - 财政年份:2024
- 资助金额:
$ 51.74万 - 项目类别:
Standard Grant