Nanoflares: Explosive Heating of our Sun's Atmosphere
纳米耀斑:太阳大气的爆炸性加热
基本信息
- 批准号:ST/L002744/1
- 负责人:
- 金额:$ 35.38万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2014
- 资助国家:英国
- 起止时间:2014 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The Sun is one of the most important objects for humankind, with solar activity driving "space weather" and having a profound effect on the Earth's environment. We can directly see the effects of the Sun's powerful radiation through fascinating sights on Earth, such as the aurora borealis. However, it is the paradoxical nature of our Sun's temperature structure that continues to frustrate scientists. One of the greatest scientific problems plaguing physicists is the fact that the outer atmosphere of our Sun is much hotter than its surface. Common sense leads us to believe that the local temperature will decrease as we move away from the Sun's 6000 K surface temperature. However, the corona, an atmospheric layer a few thousand km above the surface, radiates with a temperature exceeding one million degrees. Efforts to understand the heating processes responsible have remained at the forefront of observational and theoretical research for over 50 years, producing a popular class of theory known as flare heating. This mechanism suggests that turbulent plasma processes cause the magnetic field lines embedded in the Sun's atmosphere to become twisted and stretched. The process of magnetic reconnection results in these strained field lines returning to a more stable configuration, but releasing huge quantities of energy in the process. A large-scale solar flare can release in excess of 10^25 Joules of energy during a single event; the equivalent of over 5 million times more than the total combined energy of all atomic bombs ever detonated. However, these large events are too rare to support the continuously elevated temperatures in our Sun's outer atmosphere. Instead, it is believed that small-scale flares, or "nanoflares" with an equivalent energy of a single modern atomic bomb, may occur with such regularity that they can provide a continuous basal background heating. It is my desire to help improve our understanding of the physical processes at work within the Sun's atmosphere, an object that is so influential to life on Earth. A natural consequence of understanding the effects of solar flares will be the ability to predict solar activity, something that will ultimately allow us to protect ourselves from fierce outbursts of space weather. To pursue this crucial agenda, we need to observe and model these explosive processes occurring in the Sun's atmosphere on their intrinsic scales. A new breed of highly sensitive scientific cameras will allow for the first time fundamental processes associated with the release of magnetic energy to be studied at an unprecedented level of detail. With an STFC Research Grant, a post-doctoral researcher will employ one of these modern pieces of equipment to image a variety of magnetic structures in the Sun's atmosphere with frame rates approaching 100 per second. The intensities of all structures will be monitored, with the characteristics of small-scale nanoflares evaluated. An in-depth examination of the regions where nanoflare activity is omnipresent will allow the processes at work to be compared precisely to the underlying magnetic field configurations. Fundamental parameters deduced from high-resolution observations will be incorporated into advanced computer simulations. Large computer clusters, often exceeding 200 CPUs, will be used to examine the effects of sub-resolution nanoflare activity on the intensity profiles extracted from the high-resolution observations. A direct comparison between the simulations and the observations will be undertaken, with key nanoflare characteristics determined, including the reconnection rates, the total energy released, and the plasma relaxation time scales. For the first time, the conditions promoting nanoflares will be understood, with the specific role they play in the heating of our Sun's atmosphere evaluated.
太阳是人类最重要的天体之一,太阳活动造成“空间天气”,对地球环境产生深远影响。我们可以通过地球上迷人的景象,如北极光,直接看到太阳强大辐射的影响。然而,我们太阳温度结构的矛盾性质继续使科学家感到沮丧。困扰物理学家的最大科学问题之一是太阳的外层大气比其表面热得多。常识使我们相信,当我们远离太阳6000 K的表面温度时,当地的温度会下降。然而,日冕,一个离地表几千公里的大气层,辐射出超过一百万度的温度。50多年来,对加热过程的理解一直处于观测和理论研究的前沿,产生了一种流行的理论,称为耀斑加热。这一机制表明,湍流的等离子体过程导致嵌入太阳大气层的磁场线扭曲和拉伸。磁场重联的过程导致这些应变场线返回到更稳定的配置,但在此过程中释放出大量的能量。一次大规模的太阳耀斑在一次事件中可以释放超过10^25焦耳的能量;相当于所有原子弹爆炸总能量的500万倍以上。然而,这些大型事件太罕见了,不足以支持我们太阳外层大气中持续升高的温度。相反,人们认为,小规模的耀斑,或“纳米耀斑”与一个单一的现代原子弹的等效能量,可能会发生这样的规律,他们可以提供一个连续的基础背景加热。我的愿望是帮助提高我们对太阳大气层内物理过程的理解,太阳大气层对地球上的生命具有如此重要的影响力。了解太阳耀斑的影响的一个自然结果将是预测太阳活动的能力,这将最终使我们能够保护自己免受空间天气的猛烈爆发。为了实现这一关键议程,我们需要观察和模拟太阳大气层中发生的这些爆炸性过程。一种新的高灵敏度科学相机将首次允许以前所未有的细节水平研究与磁能释放相关的基本过程。有了STFC研究资助,一名博士后研究员将使用这些现代设备之一,以每秒接近100帧的帧率对太阳大气层中的各种磁性结构进行成像。将监测所有结构的强度,并评估小尺度纳米片的特性。对纳米耀斑活动无处不在的区域进行深入研究,将使工作过程与潜在的磁场配置进行精确比较。从高分辨率观测中推导出的基本参数将被纳入先进的计算机模拟。大型计算机集群,往往超过200个中央处理器,将用于检查亚分辨率纳米耀斑活动对从高分辨率观测中提取的强度分布的影响。将进行模拟和观测之间的直接比较,确定关键的纳米耀斑特征,包括重连率,释放的总能量和等离子体弛豫时间尺度。这是第一次,人们将了解促进纳米火焰的条件,并评估它们在太阳大气加热中所起的具体作用。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
An Inside Look at Sunspot Oscillations with Higher Azimuthal Wavenumbers
- DOI:10.3847/1538-4357/aa73d6
- 发表时间:2017-06-10
- 期刊:
- 影响因子:4.9
- 作者:Jess, David B.;Van Doorsselaere, Tom;Christian, Damian J.
- 通讯作者:Christian, Damian J.
The Magnetic Response of the Solar Atmosphere to Umbral Flashes
- DOI:10.3847/1538-4357/aab366
- 发表时间:2018-02
- 期刊:
- 影响因子:0
- 作者:S. J. Houston;D. Jess;A. A. Ramos-A.;A. A. Ramos-A.;S. Grant;C. Beck;Aimee A. Norton;S. Prasad
- 通讯作者:S. J. Houston;D. Jess;A. A. Ramos-A.;A. A. Ramos-A.;S. Grant;C. Beck;Aimee A. Norton;S. Prasad
Magnetohydrodynamic Nonlinearities in Sunspot Atmospheres: Chromospheric Detections of Intermediate Shocks
- DOI:10.3847/1538-4357/ab7a90
- 发表时间:2020-03-20
- 期刊:
- 影响因子:4.9
- 作者:Houston, S. J.;Jess, D. B.;Giorgi, F.
- 通讯作者:Giorgi, F.
TRACING THE CHROMOSPHERIC AND CORONAL MAGNETIC FIELD WITH AIA, IRIS, IBIS, AND ROSA DATA
- DOI:10.3847/0004-637x/826/1/61
- 发表时间:2016-02
- 期刊:
- 影响因子:0
- 作者:M. Aschwanden;K. Reardon;D. Jess
- 通讯作者:M. Aschwanden;K. Reardon;D. Jess
Statistical Signatures of Nanoflare Activity. II. A Nanoflare Explanation for Periodic Brightenings in Flare Stars Observed by NGTS
- DOI:10.3847/1538-4357/abbfa8
- 发表时间:2020-10
- 期刊:
- 影响因子:0
- 作者:Chris J. Dillon;D. Jess;Michail Mathioudakis;C. A. Watson;J. Jackman;P. Wheatley;M. R. Goad;S. Casewell;D. R. Anderson;M. Burleigh;L. Raynard;R. West
- 通讯作者:Chris J. Dillon;D. Jess;Michail Mathioudakis;C. A. Watson;J. Jackman;P. Wheatley;M. R. Goad;S. Casewell;D. R. Anderson;M. Burleigh;L. Raynard;R. West
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David Jess其他文献
David Jess的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David Jess', 18)}}的其他基金
PATT Travel Grant for observational astrophysics at Queen's University Belfast (2023 - 2025)
PATT 贝尔法斯特女王大学观测天体物理学旅行补助金(2023 - 2025)
- 批准号:
ST/X005526/1 - 财政年份:2023
- 资助金额:
$ 35.38万 - 项目类别:
Research Grant
PATT Travel Grant for observational astrophysics at QUB: 2020 - 2022
PATT 昆士兰大学观测天体物理学旅行补助金:2020 - 2022
- 批准号:
ST/V00199X/1 - 财政年份:2021
- 资助金额:
$ 35.38万 - 项目类别:
Research Grant
PATT Travel Grant for observational astrophysics at QUB: 2018 - 2020
PATT 昆士兰大学观测天体物理学旅行补助金:2018 - 2020
- 批准号:
ST/S001298/1 - 财政年份:2018
- 资助金额:
$ 35.38万 - 项目类别:
Research Grant
Waves and Flows: Linking the Solar Photosphere to the Corona
波与流:将太阳光球层与日冕联系起来
- 批准号:
ST/K004220/1 - 财政年份:2013
- 资助金额:
$ 35.38万 - 项目类别:
Fellowship
Pushing the Boundaries: Solar Physics in an Era of High Spatial and Temporal Resolution
突破界限:高时空分辨率时代的太阳物理学
- 批准号:
ST/G004986/1 - 财政年份:2009
- 资助金额:
$ 35.38万 - 项目类别:
Fellowship
相似海外基金
Constraints on the tempo and magnitude of explosive volcanism: facilitating long-term ash fall hazard assessments
对爆发性火山活动的速度和强度的限制:促进长期火山灰坠落危险评估
- 批准号:
MR/Y011767/1 - 财政年份:2024
- 资助金额:
$ 35.38万 - 项目类别:
Fellowship
Study of explosive transients with UV light
用紫外光研究爆炸瞬变
- 批准号:
23H01214 - 财政年份:2023
- 资助金额:
$ 35.38万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Collaborative Research: SHINE--Exploring Reconnection-Driven Solar Explosive Events in Different Regimes through Modeling and Observation
合作研究:SHINE——通过建模和观测探索不同状态下重新连接驱动的太阳爆炸事件
- 批准号:
2301338 - 财政年份:2023
- 资助金额:
$ 35.38万 - 项目类别:
Continuing Grant
Novel tools for dating explosive volcanic eruptions in the critical window
用于确定关键窗口内火山喷发时间的新工具
- 批准号:
DP230103085 - 财政年份:2023
- 资助金额:
$ 35.38万 - 项目类别:
Discovery Projects
Compressive Subsurface Radar Imaging: fast and smart detection of buried explosive threats
压缩式地下雷达成像:快速、智能地检测埋藏的爆炸物威胁
- 批准号:
EP/X022951/1 - 财政年份:2023
- 资助金额:
$ 35.38万 - 项目类别:
Fellowship
Explosive Astrophysics from Siding Spring Observatory
赛丁斯普林天文台的爆炸天体物理学
- 批准号:
LE230100063 - 财政年份:2023
- 资助金额:
$ 35.38万 - 项目类别:
Linkage Infrastructure, Equipment and Facilities
Psychophysiological Correlates of Cognitive Bias Modification in Intermittent Explosive Disorder
间歇性爆发性障碍认知偏差修正的心理生理相关性
- 批准号:
10677927 - 财政年份:2023
- 资助金额:
$ 35.38万 - 项目类别:
A phylogenomic approach to reveal the explosive adaptive radiation of wood Sonchus in Canaries
用系统发育学方法揭示加那利群岛木桑属植物的爆炸性适应性辐射
- 批准号:
22KF0187 - 财政年份:2023
- 资助金额:
$ 35.38万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Numerical modeling of conduit flow to reproduce preparation and initiation processes of explosive eruptions
管道流动的数值模拟,以重现爆炸性喷发的准备和引发过程
- 批准号:
23K03535 - 财政年份:2023
- 资助金额:
$ 35.38万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Illuminating the dark Universe with explosive astrophysical events
用爆炸性天体物理事件照亮黑暗的宇宙
- 批准号:
DE230100055 - 财政年份:2023
- 资助金额:
$ 35.38万 - 项目类别:
Discovery Early Career Researcher Award