Dynamics in solar prominences - connecting from small to large scale
太阳日珥的动态——从小到大的联系
基本信息
- 批准号:ST/L00397X/1
- 负责人:
- 金额:$ 52.69万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Fellowship
- 财政年份:2014
- 资助国家:英国
- 起止时间:2014 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Recent space based solar missions, the Japanese Hinode mission and the NASA Solar Dynamics Observatory (SDO) mission, have provided breathtaking observations of quiescent prominences (cool - 8000K - clouds of partially ionised plasma floating in the 1MK solar corona) revealing them to be highly dynamic phenomena where the fundamental process of a magnetised plasma are on constant display. To provide a specific example, one of the most exciting discoveries is that of the magnetic Rayleigh-Taylor instability, an instability that grows when a dense fluid is above a light fluid and the boundary is perturbed resulting in the formation of rising and falling plumes. Due to the fundamental physics that drive these dynamics, the answers of many of the key questions relating to prominences - i.e. what determines when they erupt, how do instabilities grow in the complex prominence environment, how does magnetic reconnection (the change in connectivity of a magnetic field that releases energy) work in the partially ionised prominence plasma, what are the connections between the different scales in prominences - are likely to be hidden within them. However, the great complexity if the prominence system has meant that we are still to understand these beautiful structures known as prominences.Recent advances in computational power, theoretical modelling and the launch of the new NASA satellite the Interface Region Imaging Spectrograph (IRIS) - with its high sensitivity and resolution - mean that we now have the tools to tackle the problems relating to this complex system. Using a state-of-the-art code which simultaneously solves the dynamics of the neutrals and the ions in a partially ionised plasma system the interaction between the two fluids that make up the prominence plasma can be correctly tracked. Simulations of the fundamental physics that control the prominence system will be performed with this partially ionised plasma code, with the results compared and contrasted to the observational data to let theory and observations guide each other. Through this feedback approach employing all the tools that are available to use, we can head towards a new and exciting understanding to the prominence system.The proposed work has a number of key aims that will be investigated:1) How do MHD instabilities (in particular the magnetic Rayleigh-Taylor instability) form in quiescent prominences.2) How does the presence of instabilities on small spatial and temporal scales effect the prominence system on longer timescales and larger spatial scales, what are the observational signatures of these processes and how do they relate to prominence eruptions.3) What are the basic physics that controls the reconnection of magnetic fields in the partially ionised prominence material across the many observable scales.4) How can we connect between the dynamic phenomena observed and the complex physics of the prominence system. This research would take place at the Department of Applied Mathematics and Theoretical Physics (DAMTP), University of Cambridge. In this project, I will investigate the wide range of observed prominence dynamics from both a theoretical and observational perspective. Therefore, the use of a wide range of techniques, from large-scale numerical simulations of the formation of instabilities in a prominence to the analysis of the spectral lines emitted by solar plasma to determine the plasma motion in the prominence, will be necessary. The senior staff at DAMTP have great experience in a wide range of areas required for my study. Drs. Helen Mason and G. Del Zanna are world leaders in the field of solar spectral observations and Profs. M. Proctor, J. Papaloizou and G. Ogilvie are greatly experienced in the study of astrophysical systems through large-scale numerical simulations. All these combine to make DAMTP the perfect place to be to get the full support necessary for my work.
最近的太空太阳任务,日本的日野号任务和美国宇航局的太阳动力学观测站(SDO)任务,提供了静止日珥(冷却- 8000K -部分电离等离子体云漂浮在1MK日冕)的惊人观测结果,揭示了它们是高度动态的现象,其中磁化等离子体的基本过程不断显示。举一个具体的例子,最令人兴奋的发现之一是磁瑞利-泰勒不稳定性,当致密流体在轻流体之上时,边界受到干扰,导致上升和下降羽流的形成,这种不稳定性就会增加。由于驱动这些动力学的基本物理学,许多与日珥有关的关键问题的答案——即是什么决定了它们何时爆发,不稳定性如何在复杂的日珥环境中增长,磁重联(释放能量的磁场连通性的变化)如何在部分电离的日珥等离子体中工作,日珥中不同尺度之间的联系是什么——很可能隐藏在它们之中。然而,日珥系统的巨大复杂性意味着我们仍然需要了解这些被称为日珥的美丽结构。最近在计算能力、理论建模和新发射的美国宇航局卫星界面区域成像光谱仪(IRIS)方面的进展-具有高灵敏度和分辨率-意味着我们现在有了解决与这个复杂系统有关的问题的工具。使用最先进的代码,可以同时解决部分电离等离子体系统中中性和离子的动力学,可以正确地跟踪组成日珥等离子体的两种流体之间的相互作用。控制日珥系统的基础物理模拟将用这种部分电离的等离子体代码进行,并将结果与观测数据进行比较和对比,以使理论和观测相互指导。通过使用所有可用工具的反馈方法,我们可以对突出系统有一个新的、令人兴奋的理解。提出的工作有几个关键目标将被研究:1)MHD不稳定性(特别是磁瑞利-泰勒不稳定性)如何在静止日珥中形成。2)小空间和时间尺度上的不稳定性对日珥系统在更长的时间尺度和更大的空间尺度上的影响,这些过程的观测特征是什么,它们与日珥喷发有什么关系。3)在许多可观测尺度上,控制部分电离日珥物质中磁场重联的基本物理是什么?我们如何将观测到的动态现象与日珥系统的复杂物理联系起来?这项研究将在剑桥大学应用数学和理论物理系(DAMTP)进行。在这个项目中,我将从理论和观测的角度研究观测到的日珥动力学的广泛范围。因此,使用广泛的技术,从日珥不稳定性形成的大规模数值模拟到太阳等离子体发射的光谱线分析,以确定日珥中的等离子体运动,将是必要的。DAMTP的资深员工在我学习所需的各个领域都有丰富的经验。Drs。Helen Mason和G. Del Zanna是太阳光谱观测领域的世界领导者。M. Proctor, J. Papaloizou和G. Ogilvie在通过大规模数值模拟研究天体物理系统方面经验丰富。所有这些结合在一起,使DAMTP成为我获得工作所需的全部支持的完美场所。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Self-similar solutions of asymmetric Rayleigh-Taylor mixing
- DOI:10.1063/1.5130893
- 发表时间:2020-01
- 期刊:
- 影响因子:4.6
- 作者:A. Hillier
- 通讯作者:A. Hillier
Differences between Doppler velocities of ions and neutral atoms in a solar prominence
日珥中离子和中性原子的多普勒速度之间的差异
- DOI:10.1051/0004-6361/201629979
- 发表时间:2017
- 期刊:
- 影响因子:6.5
- 作者:Anan T
- 通讯作者:Anan T
The non-linear growth of the magnetic Rayleigh-Taylor instability
- DOI:10.1051/0004-6361/201730802
- 发表时间:2017-07
- 期刊:
- 影响因子:6.5
- 作者:J. Carlyle;A. Hillier
- 通讯作者:J. Carlyle;A. Hillier
The role of cooling induced by mixing in the mass and energy cycles of the solar atmosphere
混合引起的冷却在太阳大气的质量和能量循环中的作用
- DOI:10.1093/mnras/stad234
- 发表时间:2023
- 期刊:
- 影响因子:4.8
- 作者:Hillier A
- 通讯作者:Hillier A
Dispersion relations for waves in visco-gravitating anisotropic magnetoplasmas
粘引力各向异性磁等离子体中波的色散关系
- DOI:10.1063/5.0032612
- 发表时间:2021
- 期刊:
- 影响因子:2.2
- 作者:Desta E
- 通讯作者:Desta E
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andrew Hillier其他文献
Long term use of lokivetmab (Cytopoint®) in atopic dogs
- DOI:
10.1186/s12917-025-04645-8 - 发表时间:
2025-03-26 - 期刊:
- 影响因子:2.600
- 作者:
Margaret Gober;Deb Amodie;Marnie Mellencamp;Andrew Hillier - 通讯作者:
Andrew Hillier
Evolution of the Kippenhahn–Schlüter Prominence Model Magnetic Field under Cowling Resistivity
整流罩电阻率下 Kippenhahn-Schlüter 日珥模型磁场的演化
- DOI:
10.1093/pasj/62.5.1231 - 发表时间:
2010 - 期刊:
- 影响因子:2.3
- 作者:
Andrew Hillier;K. Shibata;H. Isobe - 通讯作者:
H. Isobe
Application of UVP to rheometry
UVP在流变测定中的应用
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
高棹真介;Andrew Hillier;T. Shiratori - 通讯作者:
T. Shiratori
100年生ヒノキ燐状葉の通水維持機構
100年树龄柏磷叶水流维持机制
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
高棹真介;Andrew Hillier;T. Shiratori;○新良木歩美・東若菜・石井弘明 - 通讯作者:
○新良木歩美・東若菜・石井弘明
Simulations of reconnection-triggered downflows in solar prominences
太阳日珥重新连接触发的下流模拟
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Andrew Hillier;Hiroaki Isobe;Kazunari Shibata & Thomas Berger - 通讯作者:
Kazunari Shibata & Thomas Berger
Andrew Hillier的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andrew Hillier', 18)}}的其他基金
Dynamics of Atmospheres and Magneto-Fluids in our Solar-Planetary Environment
太阳行星环境中的大气和磁流体动力学
- 批准号:
ST/V000659/1 - 财政年份:2021
- 资助金额:
$ 52.69万 - 项目类别:
Research Grant
Dynamics in solar prominences - connecting from small to large scale
太阳日珥的动态——从小到大的联系
- 批准号:
ST/L00397X/2 - 财政年份:2016
- 资助金额:
$ 52.69万 - 项目类别:
Fellowship
Highly Tunable Surface Plasmon Enhanced Optical Transmission Through Periodic Nanostructures
通过周期性纳米结构高度可调表面等离子体增强光传输
- 批准号:
1213582 - 财政年份:2012
- 资助金额:
$ 52.69万 - 项目类别:
Standard Grant
Resonant Surface Plasmon Spectroscopy by Tunable Enhanced Light Transmission Through Nanostructured Gratings
通过纳米结构光栅可调谐增强光传输的共振表面等离子体光谱
- 批准号:
0809509 - 财政年份:2008
- 资助金额:
$ 52.69万 - 项目类别:
Continuing Grant
CAREER: Building Adaptive Interfaces from Field-Responsive Materials
职业:用场响应材料构建自适应界面
- 批准号:
0405442 - 财政年份:2003
- 资助金额:
$ 52.69万 - 项目类别:
Continuing Grant
CAREER: Building Adaptive Interfaces from Field-Responsive Materials
职业:用场响应材料构建自适应界面
- 批准号:
9875496 - 财政年份:1999
- 资助金额:
$ 52.69万 - 项目类别:
Continuing Grant
SGER: Towards Active Membrane Transport Using Optically- Responsive and Electroactive Macromolecules
SGER:利用光学响应和电活性大分子实现活性膜传输
- 批准号:
9815482 - 财政年份:1998
- 资助金额:
$ 52.69万 - 项目类别:
Standard Grant
相似国自然基金
基于“夸父一号”HXI载荷和Solar Orbiter /STIX的耀斑X射线暴多视角观测及研究
- 批准号:12303063
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
用于非富勒烯聚合物太阳能电池的苯并三氮唑类二维共轭聚合物
- 批准号:51673200
- 批准年份:2016
- 资助金额:65.0 万元
- 项目类别:面上项目
The formation and evolution of planetary systems in dense star clusters
- 批准号:11043007
- 批准年份:2010
- 资助金额:10.0 万元
- 项目类别:专项基金项目
太阳能吸附制冷管在光热制冷循环中传热特性研究
- 批准号:50976073
- 批准年份:2009
- 资助金额:36.0 万元
- 项目类别:面上项目
无线输电关键技术理论与实验研究
- 批准号:60471033
- 批准年份:2004
- 资助金额:23.0 万元
- 项目类别:面上项目
太阳能热风发电系统内能量流和空气流的理论和试验研究
- 批准号:50476078
- 批准年份:2004
- 资助金额:24.0 万元
- 项目类别:面上项目
相似海外基金
The Physics of Solar Prominences: an AI/ML approach
太阳日珥的物理学:人工智能/机器学习方法
- 批准号:
2743095 - 财政年份:2022
- 资助金额:
$ 52.69万 - 项目类别:
Studentship
Flows and Oscillations in Solar Coronal Prominences
日冕日珥中的流动和振荡
- 批准号:
2579399 - 财政年份:2021
- 资助金额:
$ 52.69万 - 项目类别:
Studentship
Observations of Solar Prominences with Multi-Conjugate Adaptive Optics: Using the Big Bear Solar Observatory as a Testbed for DKIST
使用多共轭自适应光学器件观测日珥:使用大熊太阳天文台作为 DKIST 的测试平台
- 批准号:
1907364 - 财政年份:2019
- 资助金额:
$ 52.69万 - 项目类别:
Standard Grant
The formation of solar prominences: flows and twists in magnetic flux tubes
日珥的形成:磁通量管中的流动和扭曲
- 批准号:
2221796 - 财政年份:2018
- 资助金额:
$ 52.69万 - 项目类别:
Studentship
Dynamics in solar prominences - connecting from small to large scale
太阳日珥的动态——从小到大的联系
- 批准号:
ST/L00397X/2 - 财政年份:2016
- 资助金额:
$ 52.69万 - 项目类别:
Fellowship
Determining the Plasma Parameters of Solar Prominences
确定日珥的等离子体参数
- 批准号:
25800108 - 财政年份:2013
- 资助金额:
$ 52.69万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
High Resolution Studies of Solar Flares, Active Regions, Prominences, and the Quiet Sun at Centimeter and Millimeter Wavelengths
在厘米和毫米波长下对太阳耀斑、活动区域、日珥和安静太阳进行高分辨率研究
- 批准号:
0233907 - 财政年份:2003
- 资助金额:
$ 52.69万 - 项目类别:
Continuing Grant
High Resoultion Studies of Solar Flares, Active Regions, Prominences and the Quiet Sun at Centimeter and Millemeter Wavelengths
厘米和毫米波长的太阳耀斑、活动区域、日珥和安静太阳的高分辨率研究
- 批准号:
9909809 - 财政年份:2000
- 资助金额:
$ 52.69万 - 项目类别:
Continuing Grant
High Resolution Studies of Solar Flares, Active Regions, Prominences and the Quiet Sun at Centimeter and Millimeter Wavelengths
厘米和毫米波长下太阳耀斑、活动区域、日珥和安静太阳的高分辨率研究
- 批准号:
9612738 - 财政年份:1997
- 资助金额:
$ 52.69万 - 项目类别:
Continuing Grant
A Simulation Study of the Formation of Solar Prominences and the Eruption of Solar Magnetic Fields
太阳日珥形成和太阳磁场爆发的模拟研究
- 批准号:
9696232 - 财政年份:1996
- 资助金额:
$ 52.69万 - 项目类别:
Interagency Agreement