Nuclear Physics Consolidated Grant

核物理综合拨款

基本信息

  • 批准号:
    ST/L005670/1
  • 负责人:
  • 金额:
    $ 282.07万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2014
  • 资助国家:
    英国
  • 起止时间:
    2014 至 无数据
  • 项目状态:
    已结题

项目摘要

The majority of the visible mass of the universe is made up of atomic nuclei that lie at the centre of atoms. Nuclear physics seeks to answer fundamental questions such as: "How do the laws of physics work when driven to the extremes? What are the fundamental constituents and fabric of the universe and how do they interact? How did the universe begin and how is it evolving? What is the nature of nuclear and hadronic matter?" The aim of our research is to study the properties of atomic nuclei and nuclear matter in order to answer these questions. No one yet knows how heavy a nucleus can be; in other words, just how many neutrons and protons can be made to bind together. We will study the heaviest nuclei that can be made in the laboratory and determine their properties which will allow better predictions to be made for the "superheavies". For lighter nuclei we will explore in the region of the proton and neutron drip lines, which are the borders between bound and unbound nuclei. We will determine more precisely than ever before the location of these drip lines. Nuclei beyond the proton drip line have so much electrical charge that they are highly unstable and try to achieve greater stability through the process of proton emission. We will investigate how nuclear behaviour is affected when protons become unbound.For these exotic systems we will also explore how the nucleus prefers to rearrange its shape, which can be a sphere, rugby ball, pear, etc. and how it stores its energy among the possible degrees of freedom. We will also investigate how the properties of these nuclei develop as we make them spin faster and faster. We will try to determine the precise nature of ultra high spin states in heavy nuclei, just before the nucleus breaks up due to fission. By violently removing a nucleon from a nucleus in a nuclear reaction at high energies and measuring its properties, we can investigate to what extent the nucleon "feels" the influence of its neighbouring nucleons, whether it is correlated with them. Such information tells us about the nuclear force inside the nucleus at different inter-nucleon distances. Nuclear matter can exist in different phases, analogous to the solid, liquid, gas and plasma phases in ordinary substances. By varying the temperature, density, pressure and isospin asymmetry (the relative number of neutrons and protons), nuclear matter can undergo a transition from one phase to another. Thermodynamic properties nuclear matter and its phase transitions can be described by its equation of state. In extreme conditions of density and temperature (about 100 thousands times more than the temperature at the heart of the sun!), a phase transition should occur and quarks and gluons (of which the protons and neutrons are made of) should exist in a new state of matter called the Quark-Gluon Plasma. By colliding nuclei together at high energies, we will study properties of this new state of matter and how nuclear matter behaves as the isospin asymmetry and density vary. Such information is not only important for nuclear physics but also to understand neutron stars and other compact astrophysical objects.This programme of research will employ a large variety of experimental methods to probe many aspects of nuclear structure and the phases of strongly interacting matter, mostly using instrumentation that we have constructed at several world-leading accelerator laboratories. The work will require a series of related experiments at a range of facilities in order for us to gain an insight into the answers to the questions posed above. These experiments will help theorists to refine and test their calculations that have attempted to predict the properties of nuclei and nuclear matter, often with widely differing results. The resolution of this problem will help us to describe complex many-body nuclear systems and better understand conditions in our universe a few fractions of a second after the big bang.
宇宙中可见的大部分物质是由位于原子中心的原子核组成的。核物理学试图回答一些基本问题,比如:“物理定律在极端情况下是如何起作用的?”宇宙的基本成分和结构是什么?它们是如何相互作用的?宇宙是如何开始的,又是如何演化的?原子核和强子物质的本质是什么?”我们研究的目的是研究原子核和核物质的性质,以便回答这些问题。目前还没有人知道原子核能有多重;换句话说,就是有多少中子和质子可以结合在一起。我们将研究可以在实验室中制造的最重的原子核,并确定它们的性质,以便更好地预测“超重”。对于较轻的原子核,我们将在质子和中子滴线区域进行探索,这是束缚原子核和非束缚原子核之间的边界。我们将比以往更精确地确定这些输液管的位置。质子滴注线以外的原子核有太多的电荷,因此它们非常不稳定,并试图通过质子发射的过程来获得更大的稳定性。我们将研究质子脱离束缚时核行为是如何受到影响的。对于这些奇异的系统,我们还将探索原子核如何更喜欢重新排列它的形状,它可以是一个球体,橄榄球,梨等,以及它如何在可能的自由度中存储能量。我们还将研究当我们使这些原子核旋转得越来越快时,它们的性质是如何发展的。我们将尝试确定重原子核中超高自旋态的精确性质,就在原子核因裂变而分裂之前。通过在高能核反应中从原子核中猛烈地移除一个核子并测量它的性质,我们可以研究这个核子在多大程度上“感受到”它邻近核子的影响,以及它是否与它们相关。这些信息告诉我们原子核内部在不同核子间距离处的核力。核物质可以以不同的相存在,类似于普通物质中的固体、液体、气体和等离子体相。通过改变温度、密度、压力和同位旋不对称性(中子和质子的相对数量),核物质可以经历从一个阶段到另一个阶段的转变。核物质的热力学性质及其相变可以用它的状态方程来描述。在密度和温度的极端条件下(大约是太阳中心温度的10万倍!),会发生相变,夸克和胶子(构成质子和中子的物质)会以一种新的物质状态存在,这种状态被称为夸克-胶子等离子体。通过高能原子核碰撞,我们将研究这种新物质状态的性质,以及核物质在同位旋不对称性和密度变化时的行为。这些信息不仅对核物理学很重要,而且对了解中子星和其他紧凑的天体物理物体也很重要。这个研究项目将采用多种实验方法来探索核结构和强相互作用物质的许多方面,主要使用我们在几个世界领先的加速器实验室建造的仪器。这项工作将需要在一系列设备上进行一系列相关的实验,以便我们深入了解上述问题的答案。这些实验将帮助理论学家改进和测试他们的计算,这些计算试图预测原子核和核物质的性质,结果往往大相径庭。这个问题的解决将有助于我们描述复杂的多体核系统,并更好地理解宇宙大爆炸后几分之一秒内的情况。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Inclusive photon production at forward rapidities in proton-proton collisions at $$\mathbf {\sqrt{s}}$$ s = 0.9, 2.76 and 7 TeV
$$mathbf {sqrt{s}}$$ s = 0.9、2.76 和 7 TeV 下质子-质子碰撞中正向快速产生的光子
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Rolf-Dietmar Herzberg其他文献

Direct measurement of three different deformations near the ground state in an atomic nucleus
原子核中基态附近三种不同形变的直接测量
  • DOI:
    10.1038/s42005-024-01928-8
  • 发表时间:
    2025-01-03
  • 期刊:
  • 影响因子:
    5.800
  • 作者:
    Adrian Montes Plaza;Janne Pakarinen;Philippos Papadakis;Rolf-Dietmar Herzberg;Rauno Julin;Tomás R. Rodríguez;Andrew D. Briscoe;Andrés Illana;Joonas Ojala;Panu Ruotsalainen;Eetu Uusikylä;Betool Alayed;Ahmed Alharbi;Odette Alonso-Sañudo;Kalle Auranen;Ville Bogdanoff;Jamie Chadderton;Arwin Esmaylzadeh;Christoph Fransen;Tuomas Grahn;Paul T. Greenlees;Jan Jolie;Henna Joukainen;Henri Jutila;Casper-David Lakenbrink;Matti Leino;Jussi Louko;Minna Luoma;Adam McCarter;Bondili Sreenivasa Nara Singh;Panu Rahkila;Andrea Raggio;Jorge Romero;Jan Sarén;Maria-Magdalini Satrazani;Marek Stryjczyk;Conor M. Sullivan;Álvaro Tolosa-Delgado;Juha Uusitalo;Franziskus von Spee;Jessica Warbinek;George L. Zimba
  • 通讯作者:
    George L. Zimba

Rolf-Dietmar Herzberg的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Rolf-Dietmar Herzberg', 18)}}的其他基金

Nuclear Physics Consolidated Grant 2023
核物理综合补助金 2023
  • 批准号:
    ST/Y000242/1
  • 财政年份:
    2024
  • 资助金额:
    $ 282.07万
  • 项目类别:
    Research Grant
Nuclear Physics Consolidated Grant 2013 (Equipment Bid)
2013年核物理综合赠款(设备投标)
  • 批准号:
    ST/L005689/1
  • 财政年份:
    2014
  • 资助金额:
    $ 282.07万
  • 项目类别:
    Research Grant
Spectroscopy of Superheavy Nuclei: The SAGE spectrometer
超重核光谱:SAGE 光谱仪
  • 批准号:
    EP/D002257/1
  • 财政年份:
    2006
  • 资助金额:
    $ 282.07万
  • 项目类别:
    Research Grant

相似国自然基金

Understanding complicated gravitational physics by simple two-shell systems
  • 批准号:
    12005059
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
Chinese Physics B
  • 批准号:
    11224806
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Science China-Physics, Mechanics & Astronomy
  • 批准号:
    11224804
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Frontiers of Physics 出版资助
  • 批准号:
    11224805
  • 批准年份:
    2012
  • 资助金额:
    20.0 万元
  • 项目类别:
    专项基金项目
Chinese physics B
  • 批准号:
    11024806
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目

相似海外基金

Nuclear Physics Consolidated Grant
核物理综合拨款
  • 批准号:
    ST/Y000277/1
  • 财政年份:
    2024
  • 资助金额:
    $ 282.07万
  • 项目类别:
    Research Grant
UofG Nuclear Physics Consolidated Grant
乔治城大学核物理综合拨款
  • 批准号:
    ST/Y000315/1
  • 财政年份:
    2024
  • 资助金额:
    $ 282.07万
  • 项目类别:
    Research Grant
Edinburgh Nuclear Physics Consolidated Grant 2024-27
爱丁堡核物理综合赠款 2024-27
  • 批准号:
    ST/Y000293/1
  • 财政年份:
    2024
  • 资助金额:
    $ 282.07万
  • 项目类别:
    Research Grant
Nuclear Physics Consolidated Grant 2023
核物理综合补助金 2023
  • 批准号:
    ST/Y000242/1
  • 财政年份:
    2024
  • 资助金额:
    $ 282.07万
  • 项目类别:
    Research Grant
Birmingham Nuclear Physics Consolidated Grant 2023
伯明翰核物理综合赠款 2023
  • 批准号:
    ST/Y000331/1
  • 财政年份:
    2024
  • 资助金额:
    $ 282.07万
  • 项目类别:
    Research Grant
Nuclear Physics Consolidated Grant 2023
核物理综合补助金 2023
  • 批准号:
    ST/Y000382/1
  • 财政年份:
    2024
  • 资助金额:
    $ 282.07万
  • 项目类别:
    Research Grant
Birmingham Nuclear Physics Consolidated Grant 2023
伯明翰核物理综合赠款 2023
  • 批准号:
    ST/Y00034X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 282.07万
  • 项目类别:
    Research Grant
Birmingham-SHU Nuclear Physics Consolidated Grant Application 2020
伯明翰-SHU 核物理综合资助申请 2020
  • 批准号:
    ST/V001086/1
  • 财政年份:
    2021
  • 资助金额:
    $ 282.07万
  • 项目类别:
    Research Grant
Nuclear Physics Consolidated Grant
核物理综合拨款
  • 批准号:
    ST/V00106X/1
  • 财政年份:
    2021
  • 资助金额:
    $ 282.07万
  • 项目类别:
    Research Grant
Manchester Nuclear Physics Consolidated Grant 2020
曼彻斯特核物理综合补助金 2020
  • 批准号:
    ST/V001116/1
  • 财政年份:
    2021
  • 资助金额:
    $ 282.07万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了