Joint Cryogenic Radon Emanation Measurement Facility
联合低温氡气发射测量设施
基本信息
- 批准号:ST/P005772/1
- 负责人:
- 金额:$ 13.24万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2017
- 资助国家:英国
- 起止时间:2017 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Two of the biggest challenges in physics today are to understand the nature of dark matter and the properties of the neutrino. Although dark matter is believed to make up an incredible 85% of the mass of the Universe, it has never been directly observed and so we do not know what it is. And though we do know neutrinos have mass, we do not know precisely how much or if they are their own anti-particles. If they are it could explain the tiny imbalance between matter and antimatter shortly after the Big Bang. Answers to these questions will profoundly impact our understanding of the Universe and its evolution. Experiments that aim to detect interactions with galactic dark matter particles or observe the signature of neutrino-less double beta decay that will tell us about the neutrino share a common requirement: both processes are extremely rare and so detectors must be shielded from all sources of radiation that present background to the faint signals. The first line of defence is to place the detectors in deep underground laboratories, in mines or under mountains, to limit the rate of cosmic rays from space that bombard the Earth's surface. After this the detectors are shielded with passive materials like copper, lead and water to block radiation from the underground laboratory environment, particularly from the rock. The last step is the most difficult - the detectors themselves must be constructed from pure and exceptionally clean materials that are free from trace contaminations of radioactive isotopes.The UK has internationally renowned expertise in rare-event underground physics, built up over several decades, and today we continue to hold major roles in the most sensitive experiments. We have advanced techniques to screen materials for radio-contaminants fixed within them, the traditional source of major backgrounds to-date, to limit their effect and achieve unprecedented experimental sensitivities. We may be on the edge of discovery with the next generation of dark matter and neutrino experiments. However, to meet the science reach of these future instruments, we must address an emerging background that cannot be screened with regular methods, nor easily rejected through analysis techniques. This background is the noble gas, radon. Radon is produced in materials as a decay product of trace uranium and thorium in materials, but unlike other progeny, it can diffuse out and populate entire target volumes.To address this key challenge for future experiments we must perform R&D and highly sensitive radon emanation measurements as part of our assay campaigns to select suitable construction materials and to build models that characterize radon transport and expected backgrounds. Moreover, we must assay large amounts of materials and at different temperatures, since radon emanation is dependent on material type, exposed surface areas and on the temperature of the material. Of the few high sensitivity radon systems around the world, none meet requirements for future experiments for large samples and in conditions that mimic most experiments. With this proposal we will deliver a unique radon emanation measurement facility to be located at the Rutherford Appleton Laboratory to support the UK's rare-event search research, particularly the dark matter and neutrino-less double beta decay communities. The system will enable entirely new capability for immediate R&D and for future experiments, regardless of the technology chosen for these detectors since all will need to address radon.Such a facility would be useful to a wide variety of applications well beyond physics. It would allow improvements in commercial devices that are used to perform low-radiation measurements for the medical and nuclear monitoring sections, as well as enhancing low-cost radon detectors that are used to measure radon levels in homes and the workplace to ensure safe levels given its prominent role in causing lung cancer, second only to smoking.
当今物理学面临的两个最大挑战是理解暗物质的性质和中微子的性质。虽然暗物质被认为占宇宙质量的85%,但它从未被直接观察到,所以我们不知道它是什么。尽管我们确实知道中微子有质量,但我们并不确切知道有多少质量,也不知道它们是否是自己的反粒子。如果是这样,就可以解释大爆炸后不久物质和反物质之间的微小不平衡。这些问题的答案将深刻影响我们对宇宙及其演化的理解。旨在探测与银河系暗物质粒子的相互作用或观察中微子较少的双β衰变的签名的实验将告诉我们中微子有一个共同的要求:这两个过程都非常罕见,因此探测器必须屏蔽所有辐射源,这些辐射源为微弱信号提供背景。第一道防线是将探测器放置在地下深处的实验室、矿井或山下,以限制来自太空的宇宙射线轰击地球表面的速度。在此之后,探测器被铜、铅和水等被动材料屏蔽,以阻挡来自地下实验室环境的辐射,特别是来自岩石的辐射。最后一步也是最困难的--探测器本身必须由纯净的、非常干净的材料制成,不受放射性同位素的痕量污染。英国在稀有事件地下物理学方面拥有国际知名的专业知识,这是几十年来积累起来的,今天我们仍然在最敏感的实验中发挥着重要作用。我们拥有先进的技术来筛选材料中固定的放射性污染物,这是迄今为止主要背景的传统来源,以限制其影响并实现前所未有的实验灵敏度。随着下一代暗物质和中微子实验的进行,我们可能正处于发现的边缘。然而,为了满足这些未来仪器的科学范围,我们必须解决一个新兴的背景,不能用常规方法筛选,也不能通过分析技术轻易拒绝。这个背景是惰性气体氡。氡作为材料中微量铀和钍的衰变产物在材料中产生,但与其他后代不同,它可以扩散并填充整个目标体积。为了解决未来实验的这一关键挑战,我们必须进行研发和高灵敏度的氡射气测量,作为我们检测活动的一部分,以选择合适的建筑材料,并建立表征氡传输和预期背景的模型。此外,我们必须在不同的温度下对大量材料进行化验,因为氡的散发取决于材料的类型、暴露的表面面积和材料的温度。在世界上为数不多的高灵敏度氡系统中,没有一个能满足未来大样本实验的要求,也没有一个能在模拟大多数实验的条件下进行实验。通过这项提议,我们将提供一个独特的氡射气测量设施,位于卢瑟福阿普尔顿实验室,以支持英国的稀有事件搜索研究,特别是暗物质和中微子少双β衰变社区。该系统将为立即的研发和未来的实验提供全新的能力,无论为这些探测器选择何种技术,因为所有探测器都需要解决氡问题。它将允许改进用于为医疗和核监测部门进行低辐射测量的商业设备,以及加强用于测量家庭和工作场所氡水平的低成本氡探测器,以确保安全水平,因为它在导致肺癌方面的突出作用仅次于吸烟。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Chamkaur Ghag其他文献
Chamkaur Ghag的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Chamkaur Ghag', 18)}}的其他基金
Support for LZ spokesperson role
支持LZ的代言人角色
- 批准号:
ST/Y002989/1 - 财政年份:2023
- 资助金额:
$ 13.24万 - 项目类别:
Research Grant
XENON FUTURES: R&D for a Global Rare Event Observatory - Phase 2
氙气期货:R
- 批准号:
ST/V001825/1 - 财政年份:2021
- 资助金额:
$ 13.24万 - 项目类别:
Research Grant
UCL Experimental Particle Physics Consolidated Grant (2019-2022)
伦敦大学学院实验粒子物理综合资助(2019-2022)
- 批准号:
ST/S000666/1 - 财政年份:2019
- 资助金额:
$ 13.24万 - 项目类别:
Research Grant
XENON FUTURES: R&D for a Global Rare Event Observatory - Phase 1
氙气期货:R
- 批准号:
ST/T007109/1 - 财政年份:2019
- 资助金额:
$ 13.24万 - 项目类别:
Research Grant
The LUX-ZEPLIN (LZ) Dark Matter Search
LUX-ZEPLIN (LZ) 暗物质搜索
- 批准号:
ST/M003981/1 - 财政年份:2015
- 资助金额:
$ 13.24万 - 项目类别:
Research Grant
Sample preparation equipment for ultra low background screening with ICP-MS
用于 ICP-MS 超低背景筛查的样品制备设备
- 批准号:
ST/M006891/1 - 财政年份:2014
- 资助金额:
$ 13.24万 - 项目类别:
Research Grant
Ultra-low activity material screening with in-house ICP-MS
使用内部 ICP-MS 进行超低活性材料筛选
- 批准号:
ST/L006170/1 - 财政年份:2014
- 资助金额:
$ 13.24万 - 项目类别:
Research Grant
Low background screening facility at Boulby for rare event search experiments
Boulby 的低背景筛选设施,用于罕见事件搜索实验
- 批准号:
ST/L003228/1 - 财政年份:2013
- 资助金额:
$ 13.24万 - 项目类别:
Research Grant
UK INVOLVEMENT IN DIRECT DARK MATTER SEARCHES
英国参与直接暗物质研究
- 批准号:
ST/K006770/1 - 财政年份:2013
- 资助金额:
$ 13.24万 - 项目类别:
Research Grant
相似海外基金
Multiband multibeam antennas for cryogenic cooled satellite ground stations
用于低温冷却卫星地面站的多频段多波束天线
- 批准号:
IE230100323 - 财政年份:2024
- 资助金额:
$ 13.24万 - 项目类别:
Early Career Industry Fellowships
Cryogenic Experimental Laboratory for Low-background Australian Research
澳大利亚低本底研究低温实验实验室
- 批准号:
LE240100044 - 财政年份:2024
- 资助金额:
$ 13.24万 - 项目类别:
Linkage Infrastructure, Equipment and Facilities
Cryogenic microwave characterization facility for quantum technologies
用于量子技术的低温微波表征设备
- 批准号:
LE240100045 - 财政年份:2024
- 资助金额:
$ 13.24万 - 项目类别:
Linkage Infrastructure, Equipment and Facilities
A cryogenic multifunctional multiscale material characterisation facility
低温多功能多尺度材料表征设施
- 批准号:
LE230100024 - 财政年份:2023
- 资助金额:
$ 13.24万 - 项目类别:
Linkage Infrastructure, Equipment and Facilities
New Algorithms for Cryogenic Electron Microscopy
低温电子显微镜的新算法
- 批准号:
10543569 - 财政年份:2023
- 资助金额:
$ 13.24万 - 项目类别:
Investigation of the fibre-matrix interface for glass fibre & carbon fibre composites exposed to cryogenic loading and fatigue conditions.
玻璃纤维纤维-基体界面的研究
- 批准号:
2889289 - 财政年份:2023
- 资助金额:
$ 13.24万 - 项目类别:
Studentship
Study of silicon nitride thin films as optical mirror coatings for cryogenic based gravitational wave detectors
氮化硅薄膜作为低温引力波探测器光学镜涂层的研究
- 批准号:
ST/X00533X/1 - 财政年份:2023
- 资助金额:
$ 13.24万 - 项目类别:
Training Grant
Visualization of Excitation Energy Transfer of Photosystem I Via Cryogenic Excitation Spectral Microscopy
通过低温激发光谱显微镜观察光系统 I 的激发能量转移
- 批准号:
23KJ0158 - 财政年份:2023
- 资助金额:
$ 13.24万 - 项目类别:
Grant-in-Aid for JSPS Fellows
CAREER: Low-energy Nuclear Physics and Fundamental Symmetries with Neutrons and Cryogenic Technologies
职业:低能核物理以及中子和低温技术的基本对称性
- 批准号:
2232117 - 财政年份:2023
- 资助金额:
$ 13.24万 - 项目类别:
Continuing Grant
EAGER/Collaborative Research: CRYO: Engineering Atomically Thin Magnetic Materials for Efficient Solid-State Cooling at Cryogenic Temperatures
EAGER/合作研究:CRYO:工程原子薄磁性材料,可在低温下进行高效固态冷却
- 批准号:
2233592 - 财政年份:2023
- 资助金额:
$ 13.24万 - 项目类别:
Standard Grant














{{item.name}}会员




