Computational Approach to Quantum Gravity via Holography
通过全息术计算量子引力的方法
基本信息
- 批准号:ST/R003599/1
- 负责人:
- 金额:$ 56.93万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Fellowship
- 财政年份:2018
- 资助国家:英国
- 起止时间:2018 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The STFC strategy is built around challenging questions like "How did the universe begin and how is it evolving?", "What are the fundamental constituents and fabric of the universe and how do they interact?", "What is the nature of spacetime?", "Is there a unified framework?". This research proposal aims to address these questions based on a new approach which combines techniques from several different research fields supported by STFC.Current understanding about the fundamental laws of nature is based on the standard model of particle physics (electromagnetism, weak interaction and strong interaction) and general relativity (gravity). This framework is far from complete. The biggest problem is that it is not a 'unified framework': while the standard model is treated quantum mechanically, the quantum aspect of gravity is poorly understood. In order to understand deep questions like the beginning of the universe or the nature of spacetime, we need a unified framework which treats all fundamental interactions quantum mechanically. The first thing to do is to obtain the theory of quantum gravity. Superstring theory is a promising theory of quantum gravity, and it is hoped that it also provides us with the unified framework of all fundamental interactions in nature. We combine an attractive idea developed from string theory - the holographic principle - with techniques from particle theory, nuclear theory and quantum information, in order to reveal the quantum aspects of gravity. The holographic principle is a very striking idea which claims quantum gravity is equivalent to certain quantum theories without gravity. The properties of the non-gravitational theories can be translated to quantum aspects of gravity via a set of nontrivial rules called holographic dictionary. One immediate consequence is that a quantum black hole should be described by manifestly unitary theory, thus providing a counter-example of Hawking's information loss paradox. Thanks to the holographic principle, one may be able to use non-gravitational theories, which in principle can be studied and solved numerically, to learn about the dynamics of superstring theory. The obstacle is, however, the lack of computational tools. Non-gravitational theories related to gravity via holographic dictionary resemble Quantum Chromodynamics (QCD), which is the theory of strong interaction inside the atom. QCD is notoriously difficult to solve by a pen and paper. However, in these two decades, nuclear theorists and lattice gauge theorists developed numerical methods to solve QCD, and by now various properties of QCD, for example the mass of proton, can be calculated numerically. In the past several years I have solved several technical difficulties associated with theories of our interest, and shown that QCD-like methods can actually be used. I have also demonstrated that a few important properties of quantum gravity can actually be obtained by numerical calculation. Another powerful tool comes from quantum information theory. For many interesting problems like Hawking's information paradox, it is important to see how quantum black holes evolve. However such calculations are notoriously difficult. Recently it has been realized that some simple theories capture many aspects of time evolutions of quantum black holes, and tools from quantum information theory turned out to be useful for these theories. With the Ernest Rutherford fellowship and the University of Southampton, I will push these approaches further and establish a computational approach to quantum gravity. It should provide physicists with basic tools for the search for the unified framework of the fundamental laws of nature.
STFC战略是围绕着具有挑战性的问题建立的,比如“宇宙是如何开始的,它是如何演变的?“,“宇宙的基本组成和结构是什么,它们如何相互作用?”、“时空的本质是什么?“、“有没有统一的框架?".本研究计划的目的是通过结合STFC支持的几个不同研究领域的技术的新方法来解决这些问题。目前对自然基本定律的理解是基于粒子物理学(电磁、弱相互作用和强相互作用)和广义相对论(引力)的标准模型。这一框架远未完成。最大的问题是它不是一个“统一的框架”:虽然标准模型是量子力学处理的,但引力的量子方面却知之甚少。为了理解宇宙起源或时空性质等深层次问题,我们需要一个统一的框架,以量子力学的方式处理所有基本相互作用。首先要做的是获得量子引力理论。超弦理论是一个很有前途的量子引力理论,人们希望它也能为我们提供自然界中所有基本相互作用的统一框架。我们将联合收割机从弦理论发展而来的一个有吸引力的想法--全息原理--与粒子理论、核理论和量子信息的技术相结合,以揭示引力的量子方面。全息原理是一个非常惊人的想法,它声称量子引力等价于没有引力的某些量子理论。非引力理论的性质可以通过一组称为全息字典的非平凡规则转换为引力的量子方面。一个直接的结果是,量子黑洞应该用明显的幺正理论来描述,从而提供了霍金信息损失悖论的反例。多亏了全息原理,人们才有可能使用非引力理论来了解超弦理论的动力学,而这些理论原则上是可以用数值方法来研究和求解的。然而,障碍是缺乏计算工具。通过全息字典与引力相关的非引力理论类似于量子色动力学(QCD),这是原子内部强相互作用的理论。众所周知,QCD很难用笔和纸解决。然而,在这二十年里,核理论家和格点规范理论家发展了数值方法来求解QCD,到目前为止,QCD的各种性质,例如质子的质量,都可以用数值方法计算。在过去的几年里,我已经解决了几个与我们感兴趣的理论相关的技术难题,并证明了类似QCD的方法实际上可以使用。我还证明了量子引力的一些重要性质实际上可以通过数值计算获得。另一个强大的工具来自量子信息理论。对于许多有趣的问题,如霍金的信息悖论,重要的是要看看量子黑洞是如何演化的。然而,这种计算是出了名的困难。最近人们意识到,一些简单的理论捕捉到了量子黑洞时间演化的许多方面,量子信息理论的工具对这些理论是有用的。在欧内斯特·卢瑟福奖学金和南安普顿大学的帮助下,我将进一步推动这些方法,并建立一个量子引力的计算方法。它应该为物理学家提供基本的工具,以寻找自然基本定律的统一框架。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Quantum chaos, thermalization, and entanglement generation in real-time simulations of the Banks-Fischler-Shenker-Susskind matrix model
Banks-Fischler-Shenker-Susskind 矩阵模型实时模拟中的量子混沌、热化和纠缠生成
- DOI:10.1103/physrevd.99.046011
- 发表时间:2019
- 期刊:
- 影响因子:5
- 作者:Buividovich P
- 通讯作者:Buividovich P
Quantum simulation of gauge theory via orbifold lattice
- DOI:10.1007/jhep09(2021)034
- 发表时间:2020-11
- 期刊:
- 影响因子:5.4
- 作者:Alex Buser;H. Gharibyan;M. Hanada;Masazumi Honda;Junyu Liu
- 通讯作者:Alex Buser;H. Gharibyan;M. Hanada;Masazumi Honda;Junyu Liu
Erratum to: Black holes and random matrices
- DOI:10.1007/jhep09(2018)002
- 发表时间:2018-09
- 期刊:
- 影响因子:5.4
- 作者:Jordan S. Cotler;Guy Gur-Ari;M. Hanada;J. Polchinski;Phil Saad;S. Shenker;D. Stanford;Alexandre Streicher;Masaki Tezuka
- 通讯作者:Jordan S. Cotler;Guy Gur-Ari;M. Hanada;J. Polchinski;Phil Saad;S. Shenker;D. Stanford;Alexandre Streicher;Masaki Tezuka
Gauged and ungauged: a nonperturbative test
计量和非计量:非微扰测试
- DOI:10.1007/jhep06(2018)124
- 发表时间:2018
- 期刊:
- 影响因子:5.4
- 作者:Berkowitz E
- 通讯作者:Berkowitz E
Real-time dynamics of matrix quantum mechanics beyond the classical approximation
超越经典近似的矩阵量子力学的实时动力学
- DOI:10.1051/epjconf/201817508006
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:Buividovich P
- 通讯作者:Buividovich P
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Masanori Hanada其他文献
Majorana Phase in Minimal S3 Invariant Extension of the Standard Model
标准模型最小 S3 不变扩展中的马约拉纳相
- DOI:
- 发表时间:
2004 - 期刊:
- 影响因子:0
- 作者:
K.S.Babu;J.Kubo;Masanori Hanada;M.Hanada;J.Kubo - 通讯作者:
J.Kubo
Negative Legacy of Minamata and its Perspective
水俣的负面遗产及其前景
- DOI:
- 发表时间:
2005 - 期刊:
- 影响因子:0
- 作者:
花田昌宣;宮北隆志;田尻雅美;花田昌宣;新日窒労働組合(花田編集協力);花田昌宣;花田昌宣;花田昌宣;花田昌宣;Masanori Hanada;Masanori Hanada;Masanori Hanada;Masanori Hanada - 通讯作者:
Masanori Hanada
負の遺産としての公害・水俣病事件を未来に活かすために
未来利用污染和水俣病事件的负面影响
- DOI:
- 发表时间:
2005 - 期刊:
- 影响因子:0
- 作者:
花田昌宣;宮北隆志;田尻雅美;花田昌宣;新日窒労働組合(花田編集協力);花田昌宣;花田昌宣;花田昌宣;花田昌宣;Masanori Hanada;Masanori Hanada;Masanori Hanada;Masanori Hanada;花田昌宣;花田昌宣 - 通讯作者:
花田昌宣
障害者雇用と就労支援の課題
残疾人就业和就业支持问题
- DOI:
- 发表时间:
2004 - 期刊:
- 影响因子:0
- 作者:
花田昌宣;宮北隆志;田尻雅美;花田昌宣;新日窒労働組合(花田編集協力);花田昌宣;花田昌宣;花田昌宣;花田昌宣;Masanori Hanada;Masanori Hanada;Masanori Hanada;Masanori Hanada;花田昌宣;花田昌宣;酒巻政章;花田昌宣;花田昌宣 - 通讯作者:
花田昌宣
LHC-ATLAS実験Run2における0レプトン終状態のグルイーノ探索結果
LHC-ATLAS 实验运行 2 中 0 轻子终态的 Gluino 搜索结果
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
脇田萌;中浜優;Masanori Hanada;泉 圭介;中浜優 - 通讯作者:
中浜優
Masanori Hanada的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Masanori Hanada', 18)}}的其他基金
Computational Approach to Quantum Gravity via Holography
通过全息术计算量子引力的方法
- 批准号:
ST/R003599/2 - 财政年份:2020
- 资助金额:
$ 56.93万 - 项目类别:
Fellowship
相似国自然基金
EnSite array指导下对Stepwise approach无效的慢性房颤机制及消融径线设计的实验研究
- 批准号:81070152
- 批准年份:2010
- 资助金额:10.0 万元
- 项目类别:面上项目
相似海外基金
CAREER: Complexity Theory of Quantum States: A Novel Approach for Characterizing Quantum Computer Science
职业:量子态复杂性理论:表征量子计算机科学的新方法
- 批准号:
2339116 - 财政年份:2024
- 资助金额:
$ 56.93万 - 项目类别:
Continuing Grant
The materials approach to quantum spacetime
量子时空的材料方法
- 批准号:
MR/X034453/1 - 财政年份:2024
- 资助金额:
$ 56.93万 - 项目类别:
Fellowship
Operational Quantum Mereology: an Information Scrambling Approach
操作量子分体学:一种信息置乱方法
- 批准号:
2310227 - 财政年份:2023
- 资助金额:
$ 56.93万 - 项目类别:
Standard Grant
The source of quantum advantages: a unified approach to quantum resources of states and processes
量子优势的来源:状态和过程量子资源的统一方法
- 批准号:
22KF0067 - 财政年份:2023
- 资助金额:
$ 56.93万 - 项目类别:
Grant-in-Aid for JSPS Fellows
The limits of Quantum Computing: an approach via Post-Quantum Cryptography
量子计算的局限性:后量子密码学的方法
- 批准号:
EP/W02778X/2 - 财政年份:2023
- 资助金额:
$ 56.93万 - 项目类别:
Fellowship
Quantum controlled collisions; an empirical approach for studying the interaction potential of molecule-surface systems.
量子控制碰撞;
- 批准号:
EP/X037886/1 - 财政年份:2023
- 资助金额:
$ 56.93万 - 项目类别:
Research Grant
Developing quantum probabilistic approach to spectral graph theory and multi-variate orthogonal polynomials
开发谱图理论和多元正交多项式的量子概率方法
- 批准号:
23K03126 - 财政年份:2023
- 资助金额:
$ 56.93万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A next-generation quantum computing based approach to enzyme targeted drug discovery
基于下一代量子计算的酶靶向药物发现方法
- 批准号:
10075020 - 财政年份:2023
- 资助金额:
$ 56.93万 - 项目类别:
Feasibility Studies
A Universal Approach for Solving Real-World Problems Using Quantum Dynamics: Coherent States for Molecular Simulations (COSMOS)
使用量子动力学解决现实世界问题的通用方法:分子模拟的相干态 (COSMOS)
- 批准号:
EP/X026973/1 - 财政年份:2023
- 资助金额:
$ 56.93万 - 项目类别:
Research Grant
Microscopic approach to nuclear fission based on a quantum many-body Hamiltonian
基于量子多体哈密顿量的核裂变微观方法
- 批准号:
23K03414 - 财政年份:2023
- 资助金额:
$ 56.93万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




