Computational Approach to Quantum Gravity via Holography
通过全息术计算量子引力的方法
基本信息
- 批准号:ST/R003599/2
- 负责人:
- 金额:$ 40.31万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Fellowship
- 财政年份:2020
- 资助国家:英国
- 起止时间:2020 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The STFC strategy is built around challenging questions like "How did the universe begin and how is it evolving?", "What are the fundamental constituents and fabric of the universe and how do they interact?", "What is the nature of spacetime?", "Is there a unified framework?". This research proposal aims to address these questions based on a new approach which combines techniques from several different research fields supported by STFC.Current understanding about the fundamental laws of nature is based on the standard model of particle physics (electromagnetism, weak interaction and strong interaction) and general relativity (gravity). This framework is far from complete. The biggest problem is that it is not a 'unified framework': while the standard model is treated quantum mechanically, the quantum aspect of gravity is poorly understood. In order to understand deep questions like the beginning of the universe or the nature of spacetime, we need a unified framework which treats all fundamental interactions quantum mechanically. The first thing to do is to obtain the theory of quantum gravity. Superstring theory is a promising theory of quantum gravity, and it is hoped that it also provides us with the unified framework of all fundamental interactions in nature. We combine an attractive idea developed from string theory - the holographic principle - with techniques from particle theory, nuclear theory and quantum information, in order to reveal the quantum aspects of gravity. The holographic principle is a very striking idea which claims quantum gravity is equivalent to certain quantum theories without gravity. The properties of the non-gravitational theories can be translated to quantum aspects of gravity via a set of nontrivial rules called holographic dictionary. One immediate consequence is that a quantum black hole should be described by manifestly unitary theory, thus providing a counter-example of Hawking's information loss paradox. Thanks to the holographic principle, one may be able to use non-gravitational theories, which in principle can be studied and solved numerically, to learn about the dynamics of superstring theory. The obstacle is, however, the lack of computational tools. Non-gravitational theories related to gravity via holographic dictionary resemble Quantum Chromodynamics (QCD), which is the theory of strong interaction inside the atom. QCD is notoriously difficult to solve by a pen and paper. However, in these two decades, nuclear theorists and lattice gauge theorists developed numerical methods to solve QCD, and by now various properties of QCD, for example the mass of proton, can be calculated numerically. In the past several years I have solved several technical difficulties associated with theories of our interest, and shown that QCD-like methods can actually be used. I have also demonstrated that a few important properties of quantum gravity can actually be obtained by numerical calculation. Another powerful tool comes from quantum information theory. For many interesting problems like Hawking's information paradox, it is important to see how quantum black holes evolve. However such calculations are notoriously difficult. Recently it has been realized that some simple theories capture many aspects of time evolutions of quantum black holes, and tools from quantum information theory turned out to be useful for these theories. With the Ernest Rutherford fellowship and the University of Southampton, I will push these approaches further and establish a computational approach to quantum gravity. It should provide physicists with basic tools for the search for the unified framework of the fundamental laws of nature.
STFC的策略是围绕一些具有挑战性的问题建立的,比如“宇宙是如何开始的,它是如何进化的?”、“宇宙的基本成分和结构是什么,它们是如何相互作用的?”、“时空的本质是什么?”、“是否存在一个统一的框架?”本研究计划旨在通过一种新的方法来解决这些问题,该方法结合了STFC支持的几个不同研究领域的技术。目前对自然基本定律的理解是基于粒子物理学的标准模型(电磁学、弱相互作用和强相互作用)和广义相对论(引力)。这个框架还远未完成。最大的问题是,它不是一个“统一的框架”:虽然标准模型是量子力学的,但引力的量子方面却知之甚少。为了理解像宇宙的起源或时空的本质这样深刻的问题,我们需要一个统一的框架,以量子力学的方式对待所有基本的相互作用。首先要做的是获得量子引力理论。超弦理论是一种很有前途的量子引力理论,人们希望它也能为我们提供自然界中所有基本相互作用的统一框架。为了揭示引力的量子方面,我们将弦理论——全息原理——与粒子理论、核理论和量子信息的技术相结合。全息原理是一个非常惊人的想法,它声称量子引力等同于某些没有引力的量子理论。非引力理论的性质可以通过一套称为全息字典的非平凡规则转化为引力的量子方面。一个直接的结果是,量子黑洞应该用明显的一元理论来描述,从而为霍金的信息损失悖论提供了一个反例。由于全息原理,人们可以使用非引力理论来了解超弦理论的动力学,而非引力理论在原则上是可以用数值方法研究和解决的。然而,障碍在于缺乏计算工具。通过全息字典与引力相关的非引力理论类似于量子色动力学(QCD),它是原子内部强相互作用的理论。众所周知,QCD很难用笔和纸来解决。然而,近二十年来,核理论家和晶格规范理论家发展了求解量子cd的数值方法,到目前为止,量子cd的各种性质,如质子的质量,都可以用数值方法计算出来。在过去的几年里,我解决了几个与我们感兴趣的理论相关的技术难题,并证明了类似qcd的方法实际上是可以使用的。我还证明了量子引力的一些重要性质实际上可以通过数值计算得到。另一个强大的工具来自量子信息理论。对于许多有趣的问题,比如霍金的信息悖论,观察量子黑洞是如何演化的是很重要的。然而,这样的计算是出了名的困难。最近人们意识到,一些简单的理论捕捉到了量子黑洞时间演化的许多方面,而量子信息论的工具被证明对这些理论很有用。在欧内斯特·卢瑟福奖学金和南安普顿大学的资助下,我将进一步推动这些方法,并建立量子引力的计算方法。它应该为物理学家寻找自然基本定律的统一框架提供基本工具。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Linear confinement in the partially-deconfined phase
部分解除约束阶段的线性约束
- DOI:10.1007/jhep03(2023)195
- 发表时间:2023
- 期刊:
- 影响因子:5.4
- 作者:Gautam V
- 通讯作者:Gautam V
Quantum simulation of gauge theory via orbifold lattice
- DOI:10.1007/jhep09(2021)034
- 发表时间:2020-11
- 期刊:
- 影响因子:5.4
- 作者:Alex Buser;H. Gharibyan;M. Hanada;Masazumi Honda;Junyu Liu
- 通讯作者:Alex Buser;H. Gharibyan;M. Hanada;Masazumi Honda;Junyu Liu
Thermal phase transition in Yang-Mills matrix model
Yang-Mills 矩阵模型中的热相变
- DOI:10.1007/jhep01(2020)053
- 发表时间:2020
- 期刊:
- 影响因子:5.4
- 作者:Bergner G
- 通讯作者:Bergner G
Toward simulating superstring/M-theory on a quantum computer
- DOI:10.1007/jhep07(2021)140
- 发表时间:2021-07-20
- 期刊:
- 影响因子:5.4
- 作者:Gharibyan, Hrant;Hanada, Masanori;Liu, Junyu
- 通讯作者:Liu, Junyu
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Masanori Hanada其他文献
Majorana Phase in Minimal S3 Invariant Extension of the Standard Model
标准模型最小 S3 不变扩展中的马约拉纳相
- DOI:
- 发表时间:
2004 - 期刊:
- 影响因子:0
- 作者:
K.S.Babu;J.Kubo;Masanori Hanada;M.Hanada;J.Kubo - 通讯作者:
J.Kubo
Negative Legacy of Minamata and its Perspective
水俣的负面遗产及其前景
- DOI:
- 发表时间:
2005 - 期刊:
- 影响因子:0
- 作者:
花田昌宣;宮北隆志;田尻雅美;花田昌宣;新日窒労働組合(花田編集協力);花田昌宣;花田昌宣;花田昌宣;花田昌宣;Masanori Hanada;Masanori Hanada;Masanori Hanada;Masanori Hanada - 通讯作者:
Masanori Hanada
負の遺産としての公害・水俣病事件を未来に活かすために
未来利用污染和水俣病事件的负面影响
- DOI:
- 发表时间:
2005 - 期刊:
- 影响因子:0
- 作者:
花田昌宣;宮北隆志;田尻雅美;花田昌宣;新日窒労働組合(花田編集協力);花田昌宣;花田昌宣;花田昌宣;花田昌宣;Masanori Hanada;Masanori Hanada;Masanori Hanada;Masanori Hanada;花田昌宣;花田昌宣 - 通讯作者:
花田昌宣
障害者雇用と就労支援の課題
残疾人就业和就业支持问题
- DOI:
- 发表时间:
2004 - 期刊:
- 影响因子:0
- 作者:
花田昌宣;宮北隆志;田尻雅美;花田昌宣;新日窒労働組合(花田編集協力);花田昌宣;花田昌宣;花田昌宣;花田昌宣;Masanori Hanada;Masanori Hanada;Masanori Hanada;Masanori Hanada;花田昌宣;花田昌宣;酒巻政章;花田昌宣;花田昌宣 - 通讯作者:
花田昌宣
LHC-ATLAS実験Run2における0レプトン終状態のグルイーノ探索結果
LHC-ATLAS 实验运行 2 中 0 轻子终态的 Gluino 搜索结果
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
脇田萌;中浜優;Masanori Hanada;泉 圭介;中浜優 - 通讯作者:
中浜優
Masanori Hanada的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Masanori Hanada', 18)}}的其他基金
Computational Approach to Quantum Gravity via Holography
通过全息术计算量子引力的方法
- 批准号:
ST/R003599/1 - 财政年份:2018
- 资助金额:
$ 40.31万 - 项目类别:
Fellowship
相似国自然基金
EnSite array指导下对Stepwise approach无效的慢性房颤机制及消融径线设计的实验研究
- 批准号:81070152
- 批准年份:2010
- 资助金额:10.0 万元
- 项目类别:面上项目
相似海外基金
CAREER: Complexity Theory of Quantum States: A Novel Approach for Characterizing Quantum Computer Science
职业:量子态复杂性理论:表征量子计算机科学的新方法
- 批准号:
2339116 - 财政年份:2024
- 资助金额:
$ 40.31万 - 项目类别:
Continuing Grant
The materials approach to quantum spacetime
量子时空的材料方法
- 批准号:
MR/X034453/1 - 财政年份:2024
- 资助金额:
$ 40.31万 - 项目类别:
Fellowship
Operational Quantum Mereology: an Information Scrambling Approach
操作量子分体学:一种信息置乱方法
- 批准号:
2310227 - 财政年份:2023
- 资助金额:
$ 40.31万 - 项目类别:
Standard Grant
The source of quantum advantages: a unified approach to quantum resources of states and processes
量子优势的来源:状态和过程量子资源的统一方法
- 批准号:
22KF0067 - 财政年份:2023
- 资助金额:
$ 40.31万 - 项目类别:
Grant-in-Aid for JSPS Fellows
The limits of Quantum Computing: an approach via Post-Quantum Cryptography
量子计算的局限性:后量子密码学的方法
- 批准号:
EP/W02778X/2 - 财政年份:2023
- 资助金额:
$ 40.31万 - 项目类别:
Fellowship
Quantum controlled collisions; an empirical approach for studying the interaction potential of molecule-surface systems.
量子控制碰撞;
- 批准号:
EP/X037886/1 - 财政年份:2023
- 资助金额:
$ 40.31万 - 项目类别:
Research Grant
Developing quantum probabilistic approach to spectral graph theory and multi-variate orthogonal polynomials
开发谱图理论和多元正交多项式的量子概率方法
- 批准号:
23K03126 - 财政年份:2023
- 资助金额:
$ 40.31万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A next-generation quantum computing based approach to enzyme targeted drug discovery
基于下一代量子计算的酶靶向药物发现方法
- 批准号:
10075020 - 财政年份:2023
- 资助金额:
$ 40.31万 - 项目类别:
Feasibility Studies
A Universal Approach for Solving Real-World Problems Using Quantum Dynamics: Coherent States for Molecular Simulations (COSMOS)
使用量子动力学解决现实世界问题的通用方法:分子模拟的相干态 (COSMOS)
- 批准号:
EP/X026973/1 - 财政年份:2023
- 资助金额:
$ 40.31万 - 项目类别:
Research Grant
Microscopic approach to nuclear fission based on a quantum many-body Hamiltonian
基于量子多体哈密顿量的核裂变微观方法
- 批准号:
23K03414 - 财政年份:2023
- 资助金额:
$ 40.31万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




