How do weak shocks accelerate high energy particles?

弱激波如何加速高能粒子?

基本信息

  • 批准号:
    ST/R003246/2
  • 负责人:
  • 金额:
    $ 14.92万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Fellowship
  • 财政年份:
    2023
  • 资助国家:
    英国
  • 起止时间:
    2023 至 无数据
  • 项目状态:
    已结题

项目摘要

Shock waves are found everywhere in the Universe and are one of the most efficient ways of accelerating particles like protons and electrons. However, the conditions required to produce those shocks and accelerate particles are so extreme that they're impossible to recreate on Earth. As a result, we still don't know a lot about how these shocks accelerate particles or how they're affected by things like density or magnetic field. Most of the shocks that produce these very high energy particles are also incredibly far away in other galaxies, making them difficult to study properly. For example, while we can see a supernova shock using astronomical telescopes, it's really hard to then identify and study the particles it accelerates.However, the Earth is located close to a natural laboratory with extreme density, temperature and magnetic field variations which regularly produces large-scale shocks that shower us with energetic particles; the Sun. We have a fleet of spacecraft returning constant observations of the Sun, allowing us to see in near-real-time the sudden release of stored magnetic energy in the solar atmosphere (also called the corona). This energy release can produce bursts of radiation that we call solar flares, hurl massive bubbles of plasma called coronal mass ejections into the solar system towards the Earth and launch vast global shock waves that can travel across the Sun in under an hour. Although these shocks are so much weaker than supernovae that they shouldn't be able to accelerate any particles, they regularly produce billions of energetic particles that we can almost immediately detect at Earth. These particles can be fatal for satellites orbiting the Earth, blinding them and causing them to fail, with knock-on effects for GPS and telecommunications. With my research, I'm trying to understand why these really weak shocks occur, how they accelerate particles to incredibly high energies and how those energetic particles affect the Earth and the near-Earth environment.The Sun offers a unique opportunity to study both extreme shocks and the particles that they accelerate at the same time in unprecedented detail; we can see what happens and "touch" the resulting particles, which is something that you can't do in any other field of astrophysics. Everything about this situation is also very counterintuitive; the Sun is a pretty average star producing very weak shocks that shouldn't be able to accelerate any particles yet it manages to accelerate particles to incredibly high energies. How this happens is still an open question, and one that has implications not just for our understanding of the Sun, but also for fundamental plasma physics and space weather. If we know how this process works we might be able to predict it, which will help us to protect vulnerable spacecraft and infrastructure on Earth. On a more personal level though, working on this topic really hammers home the differences between how calm the Sun is when you look at it from the ground versus the violently active Sun producing solar eruptions which we see from space, which I just think is fascinating.
冲击波在宇宙中无处不在,是加速质子和电子等粒子的最有效方法之一。然而,产生这些冲击和加速粒子所需的条件是如此极端,以至于它们不可能在地球上重现。因此,我们仍然不太了解这些冲击如何加速粒子,或者它们如何受到密度或磁场等因素的影响。大多数产生这些非常高能量粒子的冲击也非常遥远地位于其他星系中,这使得它们很难进行适当的研究。例如,虽然我们可以用天文望远镜看到超新星冲击波,但很难识别和研究它加速的粒子。然而,地球靠近一个天然实验室,密度、温度和磁场变化极大,经常产生大规模的冲击波,使我们充满高能粒子:太阳。我们有一队航天器返回太阳的持续观测,使我们能够近实时地看到太阳大气层(也称为日冕)中储存的磁能的突然释放。这种能量释放可以产生我们称之为太阳耀斑的辐射爆发,将称为日冕物质抛射的大量等离子体气泡抛入太阳系,并向地球发射巨大的全球冲击波,这些冲击波可以在一小时内穿越太阳。虽然这些冲击比超新星弱得多,它们不应该能够加速任何粒子,但它们经常产生数十亿的高能粒子,我们几乎可以立即在地球上检测到。这些粒子对绕地球运行的卫星来说可能是致命的,使它们致盲并导致它们失败,对GPS和电信产生连锁反应。通过我的研究,我试图了解为什么这些非常微弱的冲击会发生,它们如何将粒子加速到难以置信的高能量,以及这些高能粒子如何影响地球和近地环境。太阳提供了一个独特的机会,可以以前所未有的细节研究极端冲击和它们同时加速的粒子;我们可以看到发生了什么,并“触摸”产生的粒子,这是你在天体物理学的任何其他领域都无法做到的。关于这种情况的一切也是非常违反直觉的;太阳是一颗相当普通的星星,产生非常微弱的冲击,不应该能够加速任何粒子,但它却设法将粒子加速到令人难以置信的高能量。这是如何发生的仍然是一个悬而未决的问题,它不仅对我们对太阳的理解有影响,而且对基本等离子体物理学和空间天气也有影响。如果我们知道这个过程是如何工作的,我们就可以预测它,这将有助于我们保护地球上脆弱的航天器和基础设施。然而,在更个人的层面上,研究这个话题确实让人想起了当你从地面上看太阳时太阳是多么平静,而我们从太空中看到的太阳剧烈活动产生太阳爆发,我只是觉得这很有趣。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Slow solar wind sources High-resolution observations with a quadrature view
慢速太阳风源 具有正交视图的高分辨率观测
  • DOI:
    10.1051/0004-6361/202345983
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    6.5
  • 作者:
    Barczynski K
  • 通讯作者:
    Barczynski K
The source of unusual coronal upflows with photospheric abundance in a solar active region
太阳活动区域光球丰度异常的日冕上升流的来源
  • DOI:
    10.1051/0004-6361/202245747
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    6.5
  • 作者:
    Harra L
  • 通讯作者:
    Harra L
Extreme-ultraviolet fine structure and variability associated with coronal rain revealed by Solar Orbiter/EUI HRI EUV and SPICE
太阳轨道飞行器/EUI HRI EUV 和 SPICE 揭示了与日冕雨相关的极紫外精细结构和变化
  • DOI:
    10.1051/0004-6361/202346016
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    6.5
  • 作者:
    Antolin P
  • 通讯作者:
    Antolin P
Ultra-high-resolution observations of persistent null-point reconnection in the solar corona.
  • DOI:
    10.1038/s41467-023-37888-w
  • 发表时间:
    2023-04-13
  • 期刊:
  • 影响因子:
    16.6
  • 作者:
    Cheng, X.;Priest, E. R.;Li, H. T.;Chen, J.;Aulanier, G.;Chitta, L. P.;Wang, Y. L.;Peter, H.;Zhu, X. S.;Xing, C.;Ding, M. D.;Solanki, S. K.;Berghmans, D.;Teriaca, L.;Cuadrado, R. Aznar;Zhukov, A. N.;Guo, Y.;Long, D.;Harra, L.;Smith, P. J.;Rodriguez, L.;Verbeeck, C.;Barczynski, K.;Parenti, S.
  • 通讯作者:
    Parenti, S.
Shocklets and Short Large Amplitude Magnetic Structures (SLAMS) in the High Mach Foreshock of Venus
  • DOI:
    10.1029/2023gl104610
  • 发表时间:
    2023-09
  • 期刊:
  • 影响因子:
    5.2
  • 作者:
    G. Collinson;H. Hietala;Ferdinand Plaschke;T. Karlsson;L. B. Wilson;M. Archer;M. Battarbee;X. Blanco‐Cano;C. Bertucci;David Long;M. Opher;N. Sergis;Claire Gasque;T. Liu;S. Raptis;Sofia Burne;R. Frahm;Tielong Zhang;Y. Futaana
  • 通讯作者:
    G. Collinson;H. Hietala;Ferdinand Plaschke;T. Karlsson;L. B. Wilson;M. Archer;M. Battarbee;X. Blanco‐Cano;C. Bertucci;David Long;M. Opher;N. Sergis;Claire Gasque;T. Liu;S. Raptis;Sofia Burne;R. Frahm;Tielong Zhang;Y. Futaana
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

David Long其他文献

Title: Supporting Adolescent Well-being at School: Integrating Transformative Social and Emotional Learning and Trauma-Informed Education
标题:支持青少年在学校的福祉:整合变革性社交和情感学习与创伤知情教育
Upgrades to the ISS Urine Processor Assembly
ISS 尿液处理器组件的升级
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    D. Carter;Jill Williamson;Jimmy Hill;R. Graves;David Long;Joshua Clifton
  • 通讯作者:
    Joshua Clifton
Connecting scientists in the era of Solar Orbiter
在太阳轨道飞行器时代连接科学家
  • DOI:
    10.1038/s41550-023-01999-7
  • 发表时间:
    2023-05-31
  • 期刊:
  • 影响因子:
    14.300
  • 作者:
    David Long
  • 通讯作者:
    David Long
Clinicopathologic analysis of macrophage infiltrates in breast carcinoma.
乳腺癌巨噬细胞浸润的临床病理分析。
  • DOI:
    10.1016/s0344-0338(11)80658-8
  • 发表时间:
    1995
  • 期刊:
  • 影响因子:
    0
  • 作者:
    D. Visscher;P. Tabaczka;David Long;J. Crissman
  • 通讯作者:
    J. Crissman
Mechanical and electromechanical devices
机械和机电设备
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    D. Cowan;Martin D. Smith;Vicky Gardiner;P. Horwood;Christopher Morris;T. Holsgrove;Tori Mayhew;David Long;M. Hillman
  • 通讯作者:
    M. Hillman

David Long的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('David Long', 18)}}的其他基金

RII Track-4: NSF: Developing 3D Models of Live-Endothelial Cell Dynamics with Application Appropriate Validation
RII Track-4:NSF:开发活内皮细胞动力学的 3D 模型并进行适当的应用验证
  • 批准号:
    2327466
  • 财政年份:
    2024
  • 资助金额:
    $ 14.92万
  • 项目类别:
    Standard Grant
Using microinjections and flow to enhance maturation of blood vessel organoids into regenerative medicine tools
使用显微注射和流动促进血管类器官成熟为再生医学工具
  • 批准号:
    MR/X503113/1
  • 财政年份:
    2022
  • 资助金额:
    $ 14.92万
  • 项目类别:
    Research Grant
Collaborative Research: Investigating STEM Teacher Preparation and Rural Teacher Persistence and Retention
合作研究:调查 STEM 教师准备和农村教师的坚持和保留
  • 批准号:
    2050095
  • 财政年份:
    2021
  • 资助金额:
    $ 14.92万
  • 项目类别:
    Standard Grant
Bridging the gap to translation by understanding and preventing diabetic vascular complications using human organoids
通过使用人体类器官了解和预防糖尿病血管并发症来缩小翻译差距
  • 批准号:
    MR/T032251/1
  • 财政年份:
    2020
  • 资助金额:
    $ 14.92万
  • 项目类别:
    Research Grant
How do weak shocks accelerate high energy particles?
弱激波如何加速高能粒子?
  • 批准号:
    ST/R003246/1
  • 财政年份:
    2019
  • 资助金额:
    $ 14.92万
  • 项目类别:
    Fellowship
Investigating the renal microvasculature in polycystic kidney disease
研究多囊肾病的肾脏微血管系统
  • 批准号:
    MR/P018629/1
  • 财政年份:
    2017
  • 资助金额:
    $ 14.92万
  • 项目类别:
    Research Grant
Preparing Secondary Teachers of Mathematics and Science in Rural Districts
培养农村中学数学和科学教师
  • 批准号:
    1660721
  • 财政年份:
    2017
  • 资助金额:
    $ 14.92万
  • 项目类别:
    Continuing Grant
North Sea Interactive: A decision-support tool to guide environmental monitoring by the oil and gas industry
North Sea Interactive:指导石油和天然气行业环境监测的决策支持工具
  • 批准号:
    NE/L008181/1
  • 财政年份:
    2014
  • 资助金额:
    $ 14.92万
  • 项目类别:
    Research Grant
The role of podocyte thymosin-beta4 in the healthy and diseased glomerulus
足细胞胸腺素-β4 在健康和患病肾小球中的作用
  • 批准号:
    MR/J003638/1
  • 财政年份:
    2012
  • 资助金额:
    $ 14.92万
  • 项目类别:
    Research Grant
Collaborative Research: Free-drifting Icebergs as Proliferating Dispersion Sites of Iron Enrichment, Organic Carbon Production and Export in the Southern Ocean
合作研究:自由漂流冰山作为南大洋铁富集、有机碳生产和出口扩散的扩散场所
  • 批准号:
    0636440
  • 财政年份:
    2007
  • 资助金额:
    $ 14.92万
  • 项目类别:
    Continuing Grant

相似国自然基金

复合菌剂在高DO下的好氧反硝化脱氮机制及工艺调控研究
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
内生真菌DO14多糖PPF30调控铁皮石斛葡甘聚糖生物合成的机制
  • 批准号:
    LZ23H280001
  • 批准年份:
    2023
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于捕获“Do not eat me”信号的肺癌异质性分子功能可视化及机理研究
  • 批准号:
    92259102
  • 批准年份:
    2022
  • 资助金额:
    60.00 万元
  • 项目类别:
    重大研究计划
基于达文波特星形酵母Do18强化发酵的糟带鱼生物胺生物调控机制
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于PO-DGT原理的沉积物微界面pH-DO-磷-重金属的精细化同步成像技术研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
CD38/cADPR信号通路异常促逼尿肌过度活动(DO)发生的分子机制及干预措施研究
  • 批准号:
    81770762
  • 批准年份:
    2017
  • 资助金额:
    56.0 万元
  • 项目类别:
    面上项目
USP2介导RagA去泛素化稳定肿瘤细胞“Do not eat me”信号的机制研究
  • 批准号:
    81773040
  • 批准年份:
    2017
  • 资助金额:
    62.0 万元
  • 项目类别:
    面上项目
抑制骨细胞来源Sclerostin蛋白对颌面部DO成骨的协同促进作用
  • 批准号:
    81771104
  • 批准年份:
    2017
  • 资助金额:
    56.0 万元
  • 项目类别:
    面上项目
内生真菌DO14促铁皮石斛多糖成分积累的作用机制
  • 批准号:
    31600259
  • 批准年份:
    2016
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
末次冰期东亚季风DO事件的定年、转型及亚旋回研究
  • 批准号:
    40702026
  • 批准年份:
    2007
  • 资助金额:
    19.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Renewal application: How do ecological trade-offs drive ectomycorrhizal fungal community assembly? Fine- scale processes with large-scale implications
更新应用:生态权衡如何驱动外生菌根真菌群落组装?
  • 批准号:
    MR/Y011503/1
  • 财政年份:
    2025
  • 资助金额:
    $ 14.92万
  • 项目类别:
    Fellowship
The Politics of Financial Citizenship - How Do Middle Class Expectations Shape Financial Policy and Politics in Emerging Market Democracies?
金融公民政治——中产阶级的期望如何影响新兴市场民主国家的金融政策和政治?
  • 批准号:
    EP/Z000610/1
  • 财政年份:
    2024
  • 资助金额:
    $ 14.92万
  • 项目类别:
    Research Grant
How do healthy brains drive a healthy economy? A novel occupational neuroscience approach
健康的大脑如何推动健康的经济?
  • 批准号:
    MR/X034100/1
  • 财政年份:
    2024
  • 资助金额:
    $ 14.92万
  • 项目类别:
    Fellowship
Collaborative Research: How do plants control sperm nuclear migration for successful fertilization?
合作研究:植物如何控制精子核迁移以成功受精?
  • 批准号:
    2334517
  • 财政年份:
    2024
  • 资助金额:
    $ 14.92万
  • 项目类别:
    Standard Grant
Doctoral Dissertation Research: Do social environments influence the timing of male maturation in a close human relative?
博士论文研究:社会环境是否影响人类近亲的男性成熟时间?
  • 批准号:
    2341354
  • 财政年份:
    2024
  • 资助金额:
    $ 14.92万
  • 项目类别:
    Standard Grant
Do fine-scale water column structure and particle aggregations favor gelatinous-dominated food webs in subtropical continental shelf environments?
细尺度水柱结构和颗粒聚集是否有利于亚热带大陆架环境中以凝胶状为主的食物网?
  • 批准号:
    2244690
  • 财政年份:
    2024
  • 资助金额:
    $ 14.92万
  • 项目类别:
    Standard Grant
Do root microbiomes control seagrass response to environmental stress?
根部微生物组是否控制海草对环境压力的反应?
  • 批准号:
    DP240100566
  • 财政年份:
    2024
  • 资助金额:
    $ 14.92万
  • 项目类别:
    Discovery Projects
Do autoantibodies to aberrantly glycosylated MUC1 drive extra-articular rheumatoid arthritis, and can GSK assets prevent driver antigen formation?
针对异常糖基化 MUC1 的自身抗体是否会导致关节外类风湿性关节炎,GSK 资产能否阻止驱动抗原形成?
  • 批准号:
    MR/Y022947/1
  • 财政年份:
    2024
  • 资助金额:
    $ 14.92万
  • 项目类别:
    Research Grant
Do oxidative breaks accumulate at gene regulatory regions in disease?
疾病中的基因调控区域是否会积累氧化断裂?
  • 批准号:
    MR/Y000021/1
  • 财政年份:
    2024
  • 资助金额:
    $ 14.92万
  • 项目类别:
    Research Grant
Why Do Breeders Tolerate Non-breeders In Animal Societies?
为什么动物社会中的饲养者容忍非饲养者?
  • 批准号:
    2333286
  • 财政年份:
    2024
  • 资助金额:
    $ 14.92万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了