SHIFTS IN ACTIN-MICROTUBULE FORCES IN THE ENDOTHELIUM
内皮肌动蛋白微管力的变化
基本信息
- 批准号:6387218
- 负责人:
- 金额:$ 26.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2000
- 资助国家:美国
- 起止时间:2000-07-01 至 2005-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
DESCRIPTION: (Verbatim from Applicant's abstract): Inflammatory edema is
mediated by cytoskeletal-based mechanical forces, which induce endothelial-cell
retraction. Agents that increase intracellular cAMP protect the endothelium
from inflammatory mediators. Understanding the mechanisms by which edemagenic
agents and cAMP agonists remodel the endothelial cytoskeleton, which, in turn,
regulates barrier function, is critical to precisely develop treatments. We
previously reported that edemagenic agents disrupt barrier function independent
of expression of actin-myosin contraction. Expression of actin-myosin
contraction increases inflammatory edema by impacting the restoration of
barrier function. Increased intracellular cAMP does not protect barrier
function through inhibition of actin-myosin tension development, but does so by
uncoupling this contractile load from disrupting cell adhesion. The PI, a new
investigator, will test the hypothesis in human endothelial cells that
microtubules modulate endothelial-cell adhesion through a counterbalance force
with actin-myosin filaments. By modulating microtubule assembly, the expression
of centripetal actin-myosin tension can have differential effects on cell
adhesion. To test this hypothesis we have taken an interdisciplinary approach
that uses cell biology and engineering to address this fundamental question. In
Aim 1, we will test whether changes in microtubule assembly remodel mechanical
forces through shifts in load-bearing forces between microtubules and
actin-myosin elements. In Aim 2, we will localize whether microtubules and
actin-myosin forces are directed at cell-cell or cell-matrix sites. In Aim 3,
we will then test whether changes in microtubule assembly alter cell adhesion
based on shifts in load-bearing forces, and whether physiological stimuli
utilize this basic mechanism. In Aim 4, we will test an alternative hypothesis
that changes in microtubule assembly alter cell adhesion through crosstalk
communication through integrin-ligand interactions. We have assembled an
interdisciplinary group of biologists, a physician, a physicist and engineers.
We will use a mathematical model of transendothelial impedance to localize
changes in cell adhesion. We will directly measure centripetal tension and cell
stiffness. We will measure biochemical changes in myosin, actin and
microtubules. We will utilize molecular approaches and quantitative dynamic
imaging approaches in living cells to further validate our hypothesis. We
believe that the results of these studies will greatly advance vascular and
cell biology.
描述:(逐字摘自申请者摘要):炎症性水肿
由基于细胞骨架的机械力介导,诱导内皮细胞
撤回。增加细胞内cAMP的药物保护内皮
来自炎性介质。了解水肿病的发生机制
药物和cAMP激动剂重塑内皮细胞骨架,进而,
调节屏障功能,是精确开发治疗方法的关键。我们
此前有报道称,水肿剂可独立干扰屏障功能
肌动蛋白-肌球蛋白收缩的表达。肌动蛋白-肌球蛋白的表达
收缩通过影响血管的修复而增加炎性水肿
屏障功能。细胞内cAMP升高不能保护屏障
通过抑制肌动蛋白-肌球蛋白张力的发展发挥作用,但通过
使这种收缩负荷从破坏细胞黏附中解脱出来。少年派,一种新的
研究人员将在人类内皮细胞中测试这一假设
微管通过平衡力调节内皮细胞黏附
带有肌动蛋白-肌球蛋白细丝。通过调节微管组装,表达
向心性肌动蛋白-肌球蛋白张力对细胞有不同的影响
粘附力。为了检验这一假设,我们采取了跨学科的方法。
它使用细胞生物学和工程学来解决这个根本问题。在……里面
目的1,我们将测试微管组装的变化是否重塑机械
通过微管和微管之间的承重力的转移而产生的力
肌动蛋白-肌球蛋白成分。在目标2中,我们将定位微管和
肌动蛋白-肌球蛋白力直接作用于细胞-细胞或细胞-基质部位。在《目标3》中,
然后,我们将测试微管组装的变化是否会改变细胞黏附
基于负荷力的变化,以及生理刺激是否
利用这一基本机制。在目标4中,我们将测试另一种假设
微管组装的变化通过串扰改变细胞黏附
通过整合素-配体相互作用进行通讯。我们已经组装了一个
由生物学家、内科医生、物理学家和工程师组成的跨学科小组。
我们将使用跨内皮细胞阻抗的数学模型来定位
细胞黏附的变化。我们将直接测量向心张力和细胞
僵硬。我们将测量肌球蛋白、肌动蛋白和
微管。我们将利用分子方法和定量动力学
在活细胞中的成像方法进一步验证了我们的假设。我们
相信这些研究的结果将极大地促进血管和
细胞生物学。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alan B Moy其他文献
Alan B Moy的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alan B Moy', 18)}}的其他基金
Improving The Reproducibility and Genetic Stability of IPSC and Differentiated Cells Through Oncogene-Free Reprogramming and Fully Human Growth Factors
通过无癌基因重编程和全人类生长因子提高 IPSC 和分化细胞的再现性和遗传稳定性
- 批准号:
10239237 - 财政年份:2020
- 资助金额:
$ 26.9万 - 项目类别:
Improving The Reproducibility and Genetic Stability of IPSC and Differentiated Cells Through Oncogene-Free Reprogramming and Fully Human Growth Factors
通过无癌基因重编程和全人类生长因子提高 IPSC 和分化细胞的再现性和遗传稳定性
- 批准号:
10080387 - 财政年份:2020
- 资助金额:
$ 26.9万 - 项目类别:
SHIFTS IN ACTIN-MICROTUBULE FORCES IN THE ENDOTHELIUM
内皮肌动蛋白微管力的变化
- 批准号:
6167251 - 财政年份:2000
- 资助金额:
$ 26.9万 - 项目类别:
SHIFTS IN ACTIN-MICROTUBULE FORCES IN THE ENDOTHELIUM
内皮肌动蛋白微管力的变化
- 批准号:
6786804 - 财政年份:2000
- 资助金额:
$ 26.9万 - 项目类别:
SHIFTS IN ACTIN-MICROTUBULE FORCES IN THE ENDOTHELIUM
内皮肌动蛋白微管力的变化
- 批准号:
6766953 - 财政年份:2000
- 资助金额:
$ 26.9万 - 项目类别:
SHIFTS IN ACTIN-MICROTUBULE FORCES IN THE ENDOTHELIUM
内皮肌动蛋白微管力的变化
- 批准号:
6520305 - 财政年份:2000
- 资助金额:
$ 26.9万 - 项目类别:
SHIFTS IN ACTIN-MICROTUBULE FORCES IN THE ENDOTHELIUM
内皮肌动蛋白微管力的变化
- 批准号:
6606997 - 财政年份:2000
- 资助金额:
$ 26.9万 - 项目类别:
相似海外基金
CAREER: Evolutionary biomechanics and functional morphology of salamander locomotion
职业:蝾螈运动的进化生物力学和功能形态
- 批准号:
2340080 - 财政年份:2024
- 资助金额:
$ 26.9万 - 项目类别:
Continuing Grant
Cruising the whale superhighway: The evolution, biomechanics, and ecological drivers of migration in cetaceans
巡航鲸鱼高速公路:鲸目动物迁徙的进化、生物力学和生态驱动因素
- 批准号:
NE/Y000757/1 - 财政年份:2024
- 资助金额:
$ 26.9万 - 项目类别:
Research Grant
2024 Summer Biomechanics, Bioengineering, and Biotransport Conference; Lake Geneva, Wisconsin; 11-14 June 2024
2024年夏季生物力学、生物工程和生物运输会议;
- 批准号:
2413182 - 财政年份:2024
- 资助金额:
$ 26.9万 - 项目类别:
Standard Grant
Predictive Biomechanics for Modelling Gait Stability and Falls Prediction
用于步态稳定性和跌倒预测建模的预测生物力学
- 批准号:
DP240101449 - 财政年份:2024
- 资助金额:
$ 26.9万 - 项目类别:
Discovery Projects
CAREER: Characterization of Vocal Fold Vascular Lesions Biomechanics using Computational Modeling
职业:使用计算模型表征声带血管病变生物力学
- 批准号:
2338676 - 财政年份:2024
- 资助金额:
$ 26.9万 - 项目类别:
Standard Grant
NSF Convergence Accelerator, Track M: TANDEM: Tensegrity-based Assistive aND rehabilitation Exosuits to complement human bioMechanics
NSF 融合加速器,轨道 M:TANDEM:基于张拉整体的辅助和康复外装,以补充人体生物力学
- 批准号:
2344385 - 财政年份:2024
- 资助金额:
$ 26.9万 - 项目类别:
Standard Grant
Doctoral Dissertation Research: The three-dimensional biomechanics of the grasping big toe among higher primates
博士论文研究:高等灵长类抓握大脚趾的三维生物力学
- 批准号:
2341368 - 财政年份:2024
- 资助金额:
$ 26.9万 - 项目类别:
Standard Grant
Biomechanics of the Swimming and Chemotaxis of the Leptospiraceae
钩端螺旋体科游泳和趋化性的生物力学
- 批准号:
2309442 - 财政年份:2023
- 资助金额:
$ 26.9万 - 项目类别:
Standard Grant
Conference: Gordon Research Conference on Biomechanics in Vascular Biology and Disease; South Hadley, Massachusetts; 6-11 August 2023
会议:戈登血管生物学和疾病生物力学研究会议;
- 批准号:
2316830 - 财政年份:2023
- 资助金额:
$ 26.9万 - 项目类别:
Standard Grant
Discovering the Biomechanics of Filamentous Fungi and their Hyphae
发现丝状真菌及其菌丝的生物力学
- 批准号:
2233973 - 财政年份:2023
- 资助金额:
$ 26.9万 - 项目类别:
Standard Grant














{{item.name}}会员




