ENHANCED MEAN-FIELD SIMULATIONS OF ANTIBODY CDR LOOPS

抗体 CDR 环的增强平均场模拟

基本信息

项目摘要

The availability of accurate three-dimensional structtires for important biomolecules such as proteins and nucleic acids can greatly aid in the understanding of their fimction, as well as in the rational design of pharmaceutical compounds. However, the structural database is relatively smaii. Structures are often built using comparative modeling. but these are typically less accurate in loop regions. A new approach to predict highly accurate loop conformations in proteins will be developed, with specific application to antibody CDR loops. This mean-field method will dramatically increase sampling of alternate conformations while maintaining compatibility with state of the art simulation techniques such as molecular dynamics in explicit solvation. Individual water molecules often have structural roles, and replacement with a continuum model may result in an unacceptable loss of accuracy. This is a key advantage of the method over those currently in use. Since the method is enezgy-based it is more general than those using databases, and will improve many areas of structural modeling. The project will consist of development of an enhanced locally Enhanced Sampling approach. This will be applied to successively more difficult problems in prediction of antibody loops. Initial studies will focus on reproducing known cases of induced fit for the important H3 loop, followed by true prediction for systems in which the H3 conformation is unknown. These will provide new insights into the determinants of induced fit, the role of solvent and key structural details for several antibodies of biomedical importance. Subsequent studies will predict all 6 loops in antibody CDR regions for several catalytic antibodies. These structures will aid in understanding the factors that influence the catalytic activity of these antibodies, and how efficiency is aifected by loop flexibility, solvent molecules or deficiencies in transition state analogs against which the antibodies are raised. The method will be extended to the prediction not only of antibody conformations, but also the structures of antibody-antigen complexes. This information can be critical to the understanding of these important biomolecular interactions.
获得蛋白质、核酸等重要生物分子的精确三维结构有助于理解它们的功能,也有助于药物化合物的合理设计。然而,结构化数据库相对较小。通常使用比较模型来构建结构。但在循环区域中,这些通常不太准确。将开发一种新的方法来预测蛋白质中高精度的环构象,并具体应用于抗体CDR环。这种平均场方法将大大增加交替构象的采样,同时保持与最先进的模拟技术的兼容性,例如显式溶剂化中的分子动力学。单个水分子通常具有结构作用,用连续介质模型替换可能会导致无法接受的精度损失。与目前使用的方法相比,这是该方法的一个关键优势。由于该方法是基于能量的,因此它比使用数据库的方法更具一般性,并将改进结构建模的许多领域。该项目将包括制定一种强化的当地强化抽样方法。这将被应用于抗体环预测中更困难的问题。最初的研究将集中在重现重要的H3环的诱导匹配的已知案例,然后是对其中H3构象未知的系统的真实预测。这些将为几种具有生物医学重要性的抗体的诱导匹配的决定因素、溶剂的作用和关键结构细节提供新的见解。随后的研究将预测几种催化抗体在抗体CDR区域的所有6个循环。这些结构将有助于理解影响这些抗体催化活性的因素,以及环灵活性、溶剂分子或抗体所针对的过渡态类似物的缺陷如何影响效率。该方法不仅可以预测抗体的构象,还可以预测抗体-抗原复合体的结构。这些信息对于理解这些重要的生物分子相互作用是至关重要的。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

CARLOS SIMMERLING其他文献

CARLOS SIMMERLING的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('CARLOS SIMMERLING', 18)}}的其他基金

New solvent models, sampling methods and maintenance of Amber software
Amber 软件的新溶剂模型、采样方法和维护
  • 批准号:
    8870395
  • 财政年份:
    2013
  • 资助金额:
    $ 18.81万
  • 项目类别:
New solvent models, sampling methods and maintenance of Amber software
Amber 软件的新溶剂模型、采样方法和维护
  • 批准号:
    8558811
  • 财政年份:
    2013
  • 资助金额:
    $ 18.81万
  • 项目类别:
New solvent models, sampling methods and maintenance of Amber software
Amber 软件的新溶剂模型、采样方法和维护
  • 批准号:
    8708162
  • 财政年份:
    2013
  • 资助金额:
    $ 18.81万
  • 项目类别:
New solvent models, sampling methods and maintenance of Amber software
Amber 软件的新溶剂模型、采样方法和维护
  • 批准号:
    9091615
  • 财政年份:
    2013
  • 资助金额:
    $ 18.81万
  • 项目类别:
New Solvent Models, Sampling Methods and Maintenance of Amber Software
Amber 软件的新溶剂模型、采样方法和维护
  • 批准号:
    9447617
  • 财政年份:
    2013
  • 资助金额:
    $ 18.81万
  • 项目类别:
New Solvent Models, Sampling Methods and Maintenance of Amber Software
Amber 软件的新溶剂模型、采样方法和维护
  • 批准号:
    9974519
  • 财政年份:
    2013
  • 资助金额:
    $ 18.81万
  • 项目类别:
IMPROVING BIOMOLECULAR SIMULATIONS: ENERGY FUNCTIONS AND CONFORMATIONAL SAMPLIN
改进生物分子模拟:能量函数和构象采样
  • 批准号:
    7601279
  • 财政年份:
    2007
  • 资助金额:
    $ 18.81万
  • 项目类别:
IMPROVING BIOMOLECULAR SIMULATIONS: ENERGY FUNCTIONS AND CONFORMATIONAL SAMPLIN
改进生物分子模拟:能量函数和构象采样
  • 批准号:
    7181633
  • 财政年份:
    2004
  • 资助金额:
    $ 18.81万
  • 项目类别:
Improving Biomolecular Simulations: Energy Functions and Conformational Samplin
改进生物分子模拟:能量函数和构象采样
  • 批准号:
    6980073
  • 财政年份:
    2004
  • 资助金额:
    $ 18.81万
  • 项目类别:
ENHANCED MEAN-FIELD SIMULATIONS OF ANTIBODY CDR LOOPS
抗体 CDR 环的增强平均场模拟
  • 批准号:
    6748192
  • 财政年份:
    2000
  • 资助金额:
    $ 18.81万
  • 项目类别:

相似海外基金

A Hierarchy of Fragment-based Quantum Chemical Models Incorporating Machine Learning for Applications in Nanoscale Systems
基于片段的量子化学模型的层次结构结合了机器学习在纳米级系统中的应用
  • 批准号:
    2102583
  • 财政年份:
    2021
  • 资助金额:
    $ 18.81万
  • 项目类别:
    Standard Grant
A hierarchy of composite quantum chemical models for applications in materials chemistry and nanoscience
用于材料化学和纳米科学应用的复合量子化学模型的层次结构
  • 批准号:
    1665427
  • 财政年份:
    2017
  • 资助金额:
    $ 18.81万
  • 项目类别:
    Continuing Grant
A hierarchy of composite quantum chemical models for applications in materials and surface Chemistry
用于材料和表面化学应用的复合量子化学模型的层次结构
  • 批准号:
    1266154
  • 财政年份:
    2013
  • 资助金额:
    $ 18.81万
  • 项目类别:
    Continuing Grant
Physical and chemical models for ignition processes
点火过程的物理和化学模型
  • 批准号:
    184095471
  • 财政年份:
    2010
  • 资助金额:
    $ 18.81万
  • 项目类别:
    Research Units
Chemical Models of Protein beta-Sheet Interactions
蛋白质 β-折叠相互作用的化学模型
  • 批准号:
    7847773
  • 财政年份:
    2009
  • 资助金额:
    $ 18.81万
  • 项目类别:
Synthetic Chemical Models of Ammonium Arene Interactions
芳烃铵相互作用的合成化学模型
  • 批准号:
    0739207
  • 财政年份:
    2006
  • 资助金额:
    $ 18.81万
  • 项目类别:
    Standard Grant
CAREER: Functional Chemical Models of Complex Biochemical Networks
职业:复杂生化网络的功能化学模型
  • 批准号:
    0349034
  • 财政年份:
    2004
  • 资助金额:
    $ 18.81万
  • 项目类别:
    Continuing Grant
Synthetic Chemical Models of Ammonium Arene Interactions
芳烃铵相互作用的合成化学模型
  • 批准号:
    0415586
  • 财政年份:
    2004
  • 资助金额:
    $ 18.81万
  • 项目类别:
    Standard Grant
Kinetics of Key Radical Reactions for Use in Chemical Models of Chlorinated Hydrocarbon Combustion
氯化烃燃烧化学模型中关键自由基反应的动力学
  • 批准号:
    0105239
  • 财政年份:
    2001
  • 资助金额:
    $ 18.81万
  • 项目类别:
    Standard Grant
Geometrical Dynamics of Excitation in Heart Muscle and Chemical Models
心肌和化学模型中激发的几何动力学
  • 批准号:
    9974334
  • 财政年份:
    2000
  • 资助金额:
    $ 18.81万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了