Equipment for advanced optical coatings and materials research, characterisation and development for gravitational wave detectors and beyond

用于引力波探测器等的先进光学涂层和材料研究、表征和开发的设备

基本信息

  • 批准号:
    ST/S002294/1
  • 负责人:
  • 金额:
    $ 9.94万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2018
  • 资助国家:
    英国
  • 起止时间:
    2018 至 无数据
  • 项目状态:
    已结题

项目摘要

Einstein's General Theory of Relativity (GR) predicts that dynamical systems in strong gravitational fields will release vast amounts of energy in the form of gravitational radiation. Gravitational waves are ripples in the fabric of spacetime and travel from their sources at the speed of light, carrying information about physical processes responsible for their emission, obtainable in no other way. The detection of gravitational waves (GWs) from the collision between two black holes (BHs) on 14th of June 2105 provided a spectacular validation of Einstein's theory. The signal had travelled 440 Mpc or around 1.5 billion light years before passing through the Earth and the detectors. It has opened a new window on the Universe, similar in that respect to when the first radio telescopes or the first X-ray telescopes were used. In the case of our GW detectors, they are sensitive to GWs in the frequency range of approximately 10 Hz to a few kHz. Since that first detection, 5 more binary black hole collisions, or coalescences, have been observed and on August the 17th 2017, LIGO and Virgo detectors observed the signal from the coalescence of two solar mass compact bodies, either neutron stars or black holes. 1.7 seconds later a gamma-ray detector on a satellite called "Fermi" observed a gamma ray burst (GRB). GRBs have been seen for over 40 years and although their origin was not strictly known, it had been speculated that them must be from the result of the collision of two neutron stars. The combination of the GW signal and the GRB signal, along with further follow-up observations across the electromagnetic spectrum, showed that this event had been a neutron star- neutron star collision, leading to a short duration GRB and subsequent kilonova. The wealth of new physics and astrophysics that have been published as a result of all these detections has been extraordinary.The worldwide network of interferometric detectors includes the German-UK GEO600, the French-Italian Virgo, the American Laser Interferometer Gravitational-Wave Observatory (LIGO) and is being enhanced with a new detector under construction - KAGRA in Japan. The LIGO and Virgo are improving their sensitivities and aim to meet their design goal within 2 years. Cooperation amongst different projects enables continuous data acquisition, with sensitivity to a wide range of sources and phenomena, over most of the sky. This proposal for equipment will support the experimental programme of detector research and development supported by our Consolidated Grant 'Investigations in Gravitational Radiation' [ST/N005422/1]. Our aim is to improve the detectors and increase the number of signals we can detect. If we can increase sensitivity by a factor of ten, then we "see" signals from ten times further away, or a volume of space 1,00 times larger. This would increase detection rates also by a factor of 1,000. Detector sensitivity is mainly limited by thermal noise associated with the substrates of the mirrors, their reflective coatings, and their suspension elements, as well as by noise resulting from the quantum nature of the laser light used to sense the GW. This part of our research is targeted towards making innovative improvements in the areas of mirror coatings for low thermal noise, silicon substrates, cryogenic suspensions and improved interferometer topologies to combat quantum noise. The equipment requested will enable us to greatly increase the measurements we can make on materials that can potentially help us reduce the noise in our detectors.
爱因斯坦的广义相对论预言,处于强引力场中的动力系统会以引力辐射的形式释放出大量的能量。引力波是时空结构中的涟漪,以光速从源头传播,携带着有关引力波发射的物理过程的信息,这是其他任何方式都无法获得的。2105年6月14日,两个黑洞(BHs)碰撞产生的引力波(GWs)被探测到,这为爱因斯坦的理论提供了惊人的验证。在穿过地球和探测器之前,信号已经传播了440mpc(约15亿光年)。它打开了一扇观察宇宙的新窗口,就像使用第一批射电望远镜或第一批x射线望远镜一样。在我们的GW探测器的情况下,它们对大约10赫兹到几千赫的频率范围内的GW敏感。自第一次探测以来,又观测到5次双黑洞碰撞或合并。2017年8月17日,LIGO和处女座探测器观测到两个太阳质量致密体(中子星或黑洞)合并的信号。1.7秒后,费米卫星上的伽马射线探测器观测到伽马射线暴(GRB)。伽马射线暴已经被观测了40多年,尽管它们的起源还不清楚,但人们推测它们一定是两颗中子星碰撞的结果。结合GW信号和GRB信号,以及进一步的电磁波谱观测,表明该事件是中子星-中子星碰撞,导致了短时间的GRB和随后的千新星。由于所有这些探测,发表的新物理学和天体物理学的财富是非凡的。干涉探测器的全球网络包括德国-英国的GEO600,法国-意大利的Virgo,美国的激光干涉引力波天文台(LIGO),以及正在建设中的新探测器——日本的KAGRA。LIGO和Virgo正在提高它们的灵敏度,目标是在两年内达到设计目标。不同项目之间的合作可以实现对大部分天空中各种来源和现象的持续数据采集。这项设备提案将支持由我们的“重力辐射研究”综合拨款[ST/N005422/1]支持的探测器研究和开发实验计划。我们的目标是改进检测器,增加我们可以检测到的信号数量。如果我们能将灵敏度提高10倍,那么我们就能“看到”10倍远的信号,或者1000倍大的空间。这将使检出率提高1000倍。探测器的灵敏度主要受限于与反射镜衬底、反射涂层和悬浮元件相关的热噪声,以及用于感应GW的激光的量子性质所产生的噪声。我们的这一部分研究的目标是在低热噪声、硅衬底、低温悬浮液和改进干涉仪拓扑以对抗量子噪声的镜面涂层领域进行创新改进。所要求的设备将使我们能够大大增加对材料的测量,这些测量可能有助于我们减少探测器中的噪音。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sheila Rowan其他文献

Correction to: Gravitational wave detection by interferometry (ground and space)
  • DOI:
    10.1007/s41114-022-00039-6
  • 发表时间:
    2022-07-29
  • 期刊:
  • 影响因子:
    62.500
  • 作者:
    Sheila Rowan;Jim Hough
  • 通讯作者:
    Jim Hough
Ion Energy Tuning for Enhanced sp3 Carbon Fraction in Electron Cyclotron Resonance Ion Beam Deposited Diamond-Like Carbon Coatings: a Computational and Experimental Approach
电子回旋共振离子束沉积类金刚石碳涂层中增强 sp3 碳分数的离子能量调谐:计算和实验方法
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Callum Wiseman;Marwa Ben Yaala Chalisa Gier;Laurent Marot;Christopher McCormick;Sheila Rowan;Stuart Reid
  • 通讯作者:
    Stuart Reid
Optical and Electrical Properties of Diamond-like-Carbon Coatings Prepared by Electron Cyclotron Resonance Ion Beam Deposition Process
电子回旋共振离子束沉积工艺制备类金刚石碳涂层的光学和电学性能
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Callum Wiseman;M. B. Yaala;Chalisa Gier;Laurent Marot;Christopher McCormick;Caspar Clark;Sheila Rowan;Stuart Reid
  • 通讯作者:
    Stuart Reid
Temperature Dependence of the Mechanical Dissipation of Gallium Bonds for Use in Gravitational Wave Detectors
用于引力波探测器的镓键的机械耗散的温度依赖性
  • DOI:
    10.1103/physrevlett.132.231401
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    K. Haughian;P. Murray;Stuart Hill;James Hough;Gregoire Lacaille;Iain W Martin;Sheila Rowan;Simon Tait;R. Bassiri;M. Fejer;Sudiksha Khadaka;A. Markosyan
  • 通讯作者:
    A. Markosyan

Sheila Rowan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sheila Rowan', 18)}}的其他基金

Enhanced Instrumentation for Gravitational Wave Research
用于引力波研究的增强仪器
  • 批准号:
    ST/W005395/1
  • 财政年份:
    2022
  • 资助金额:
    $ 9.94万
  • 项目类别:
    Research Grant
Investigations in Gravitational Radiation
引力辐射研究
  • 批准号:
    ST/V005634/1
  • 财政年份:
    2021
  • 资助金额:
    $ 9.94万
  • 项目类别:
    Research Grant
Investigations in Gravitational Radiation
引力辐射研究
  • 批准号:
    ST/V001736/1
  • 财政年份:
    2020
  • 资助金额:
    $ 9.94万
  • 项目类别:
    Research Grant
Investigations in Gravitational Radiation
引力辐射研究
  • 批准号:
    ST/N005422/1
  • 财政年份:
    2016
  • 资助金额:
    $ 9.94万
  • 项目类别:
    Research Grant
Capital Equipment in support of 'Investigations in Gravitational Radiation', 2014
支持“引力辐射研究”的资本设备,2014 年
  • 批准号:
    ST/M006735/1
  • 财政年份:
    2014
  • 资助金额:
    $ 9.94万
  • 项目类别:
    Research Grant
Equipment in support of Investigations in Gravitational Radiation
支持引力辐射研究的设备
  • 批准号:
    ST/L003465/1
  • 财政年份:
    2013
  • 资助金额:
    $ 9.94万
  • 项目类别:
    Research Grant
Investigations in Gravitational Radiation
引力辐射研究
  • 批准号:
    ST/L000946/1
  • 财政年份:
    2013
  • 资助金额:
    $ 9.94万
  • 项目类别:
    Research Grant
Investigations in Gravitational Radiation
引力辐射研究
  • 批准号:
    ST/J000361/1
  • 财政年份:
    2012
  • 资助金额:
    $ 9.94万
  • 项目类别:
    Research Grant
Gravitational Waves PROJECT COORDINATION
引力波项目协调
  • 批准号:
    Gravitational Waves
  • 财政年份:
    2010
  • 资助金额:
    $ 9.94万
  • 项目类别:
    Intramural
Investigations in Gravitational Radiation
引力辐射研究
  • 批准号:
    ST/I001085/1
  • 财政年份:
    2010
  • 资助金额:
    $ 9.94万
  • 项目类别:
    Research Grant

相似国自然基金

面向用户体验的IMT-Advanced系统跨层无线资源分配技术研究
  • 批准号:
    61201232
  • 批准年份:
    2012
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
LTE-Advanced中继网络关键技术研究
  • 批准号:
    61171096
  • 批准年份:
    2011
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
隧道超前探测的三分量光纤地震加速度检波机理与应用研究
  • 批准号:
    51079080
  • 批准年份:
    2010
  • 资助金额:
    32.0 万元
  • 项目类别:
    面上项目
IMT-Advanced协作中继网络中的网络编码研究
  • 批准号:
    61040005
  • 批准年份:
    2010
  • 资助金额:
    10.0 万元
  • 项目类别:
    专项基金项目
基于干扰预测的IMT-Advanced多小区干扰抑制技术研究
  • 批准号:
    61001116
  • 批准年份:
    2010
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
面向IMT-Advanced的移动组播关键技术研究
  • 批准号:
    61001071
  • 批准年份:
    2010
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
晚期糖基化终产物受体与视网膜母细胞瘤蛋白在前列腺癌细胞中的相互作用及意义
  • 批准号:
    30700835
  • 批准年份:
    2007
  • 资助金额:
    16.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Equipment for advanced optical coatings and materials research, characterisation and development for gravitational wave detectors and beyond
用于引力波探测器等的先进光学涂层和材料研究、表征和开发的设备
  • 批准号:
    ST/S002359/1
  • 财政年份:
    2018
  • 资助金额:
    $ 9.94万
  • 项目类别:
    Research Grant
Advanced Test Equipment and Scripting for Optical Networking Systems
光网络系统的先进测试设备和脚本
  • 批准号:
    490391-2015
  • 财政年份:
    2016
  • 资助金额:
    $ 9.94万
  • 项目类别:
    Experience Awards (previously Industrial Undergraduate Student Research Awards)
Advanced Test Equipment and Scripting for Optical Networking Systems
光网络系统的先进测试设备和脚本
  • 批准号:
    475077-2014
  • 财政年份:
    2015
  • 资助金额:
    $ 9.94万
  • 项目类别:
    Experience Awards (previously Industrial Undergraduate Student Research Awards)
Advanced Test Equipment and Scripting for Optical Networking Systems
光网络系统的先进测试设备和脚本
  • 批准号:
    485418-2015
  • 财政年份:
    2015
  • 资助金额:
    $ 9.94万
  • 项目类别:
    Experience Awards (previously Industrial Undergraduate Student Research Awards)
Advanced Test Equipment and Scripting for Optical Networking Systems
光网络系统的先进测试设备和脚本
  • 批准号:
    478392-2015
  • 财政年份:
    2015
  • 资助金额:
    $ 9.94万
  • 项目类别:
    Experience Awards (previously Industrial Undergraduate Student Research Awards)
Advanced Test Equipment and Scripting for Optical Networking Systems
光网络系统的先进测试设备和脚本
  • 批准号:
    429142-2014
  • 财政年份:
    2014
  • 资助金额:
    $ 9.94万
  • 项目类别:
    Experience Awards (previously Industrial Undergraduate Student Research Awards)
Advanced Test Equipment and Scripting for Optical Networking Systems
光网络系统的先进测试设备和脚本
  • 批准号:
    459084-2013
  • 财政年份:
    2014
  • 资助金额:
    $ 9.94万
  • 项目类别:
    Experience Awards (previously Industrial Undergraduate Student Research Awards)
Advanced Test Equipment and Scripting for Optical Networking Systems
光网络系统的先进测试设备和脚本
  • 批准号:
    462460-2014
  • 财政年份:
    2014
  • 资助金额:
    $ 9.94万
  • 项目类别:
    Experience Awards (previously Industrial Undergraduate Student Research Awards)
Software Development and Advanced Test Equipment for Optical Networking Systems
光网络系统的软件开发和先进测试设备
  • 批准号:
    452650-2013
  • 财政年份:
    2013
  • 资助金额:
    $ 9.94万
  • 项目类别:
    Experience Awards (previously Industrial Undergraduate Student Research Awards)
Advanced optical micro-imaging methods for determining the structural and chemical state of materials: development of, and access to equipment
用于确定材料结构和化学状态的先进光学显微成像方法:设备的开发和获取
  • 批准号:
    EP/F065272/1
  • 财政年份:
    2008
  • 资助金额:
    $ 9.94万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了