Harnessing Photonic Technologies for Deep-Tissue Imaging

利用光子技术进行深层组织成像

基本信息

  • 批准号:
    ST/T000651/1
  • 负责人:
  • 金额:
    $ 46.47万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2019
  • 资助国家:
    英国
  • 起止时间:
    2019 至 无数据
  • 项目状态:
    已结题

项目摘要

Multi-photon imaging is a ubiquitous tool in life sciences research, where pulsed tuneable lasers are required for precision microscopy. The majority of multi-photon imaging research employs two-photon fluorescent techniques, however three-photon fluorescence is emerging as a powerful instrument for deep-tissue (> 1mm) imaging as it offers reduced tissue scattering and enables access to a wide variety of fluorescent dyes and proteins. Non-destructive and non-invasive high-resolution imaging of cells through surrounding tissue and bone would be groundbreaking for research into areas including regenerative medicine and leukemia. The ideal three-photon excitation source is a low repetition frequency, high-energy femtosecond laser tuneable in the near-infrared with low average power to avoid tissue heating. The laser industry is focused on the two-photon imaging market, serviced by well-proven ~100MHz fixed wavelength and tunable sources. Three-photon excitation systems based on optical parametric amplifiers (OPAs) are available from select manufacturers, however these are highly inefficient and are prohibitively expensive for the majority of research facilities. A collaboration between an industrial laser manufacturer (Chromacity, UK) and STFC-funded academic research in photonics (McCracken, Heriot-Watt University), this project will demonstrate prototype cost-efficient lasers for three-photon microscopy, addressing this customer-driven demand by exploring two novel laser architectures to realize few-MHz optical parametric oscillators (OPOs), pumped by Chromacity's robust fiber laser technology. We will combine patented HWU IP in the generation of few-MHz high-energy OPO pulses with know-how in the construction of dispersion- controlled compact cavities to develop a commercial alternative to the dominant market offering. Working directly with early-adopters (Packer, Oxford; Lo Celso, Imperial; Williams, Edinburgh) and industrial beneficiaries (Scientifica), we will evaluate our OPO and develop it to a level where it can be brought to market in a compressed timeframe.
多光子成像是生命科学研究中普遍存在的一种工具,精密显微镜需要脉冲可调谐激光器。大多数多光子成像研究使用双光子荧光技术,然而,三光子荧光正在成为一种强大的深层组织成像工具,因为它减少了组织散射,并能够获得各种荧光染料和蛋白质。通过周围组织和骨骼对细胞进行非破坏性和非侵入性的高分辨率成像将是再生医学和白血病等领域研究的突破性进展。理想的三光子激发源是低重复频率、高能量的飞秒激光,可在低平均功率下近红外调谐,以避免组织加热。激光行业专注于双光子成像市场,由久经考验的~100 MHz固定波长和可调谐光源提供服务。基于光学参数放大器(OPA)的三光子激发系统可以从特定的制造商获得,但是这些系统效率很低,而且对于大多数研究机构来说,价格昂贵得令人望而却步。该项目是一家工业激光制造商(Chromacity,英国)和STFC资助的光子学学术研究(Heriot-Watt University,McCracken)之间的合作项目,将展示用于三光子显微镜的低成本激光原型,通过探索两种新的激光架构来实现低MHz光学参数振荡器(OPO),并利用Chromacity强大的光纤激光技术来满足客户驱动的需求。我们将结合获得专利的HWU IP在产生低MHz高能OPO脉冲方面与在构建色散控制紧凑型腔方面的专有技术相结合,开发一种替代占主导地位的市场产品的商业替代方案。我们将直接与早期采用者(牛津的帕克、帝国的Lo Celso、爱丁堡的威廉姆斯)和工业受益者(Science Fica)合作,评估我们的OPO,并将其开发到可以在压缩的时间框架内推向市场的水平。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Brewster mirror ultrafast optical parametric oscillator with high precision wavelength tuning.
具有高精度波长调谐的布鲁斯特镜超快光学参量振荡器。
  • DOI:
    10.1364/oe.507272
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    Hunter DE
  • 通讯作者:
    Hunter DE
Modelling Dispersion Compensation in a Cascaded-Fiber-Feedback Optical Parametric Oscillator
级联光纤反馈光参量振荡器中色散补偿的建模
  • DOI:
    10.3390/opt2020010
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Allan E
  • 通讯作者:
    Allan E
GPU-accelerated full-field modelling of highly dispersive ultrafast optical parametric oscillators
GPU 加速的高色散超快光学参量振荡器全场建模
  • DOI:
    10.1364/oe.509307
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    Robarts S
  • 通讯作者:
    Robarts S
Modelling two-laser asynchronous optical sampling using a single 2-section semiconductor mode-locked laser diode.
使用单个 2 节半导体锁模激光二极管对双激光器异步光学采样进行建模。
  • DOI:
    10.1364/oe.445173
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    Ejidike I
  • 通讯作者:
    Ejidike I
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Richard McCracken其他文献

Richard McCracken的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Richard McCracken', 18)}}的其他基金

Capital call for ST/T000651/1, "Harnessing Photonic Technologies for Deep-Tissue Imaging"
ST/T000651/1“利用光子技术进行深层组织成像”的资金募集
  • 批准号:
    ST/T003243/1
  • 财政年份:
    2019
  • 资助金额:
    $ 46.47万
  • 项目类别:
    Research Grant
High-speed quantum random number generation for secure data communications
用于安全数据通信的高速量子随机数生成
  • 批准号:
    EP/R044147/1
  • 财政年份:
    2018
  • 资助金额:
    $ 46.47万
  • 项目类别:
    Research Grant

相似海外基金

STREAM 2: A placed-based IAA in Photonic Technologies in Scotland's Central Belt
STREAM 2:苏格兰中央地带光子技术领域的基于位置的 IAA
  • 批准号:
    EP/Y024109/1
  • 财政年份:
    2024
  • 资助金额:
    $ 46.47万
  • 项目类别:
    Research Grant
Heating with light: photonic curing for photovoltaic technologies
光加热:光伏技术的光子固化
  • 批准号:
    EP/Y022270/1
  • 财政年份:
    2024
  • 资助金额:
    $ 46.47万
  • 项目类别:
    Research Grant
Development of fundamental technologies for III-V semiconductor membrane photonic integrated circuits using quantum well intermixing
利用量子阱混合开发III-V族半导体膜光子集成电路基础技术
  • 批准号:
    23H00172
  • 财政年份:
    2023
  • 资助金额:
    $ 46.47万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
EAGER: Quantum Manufacturing: Manufacturing Integrated Quantum Sensing and Quantum Photonic Technologies Through Direct Bonding of Diamond Membranes
EAGER:量子制造:通过直接粘合金刚石膜制造集成量子传感和量子光子技术
  • 批准号:
    2240399
  • 财政年份:
    2023
  • 资助金额:
    $ 46.47万
  • 项目类别:
    Standard Grant
Platform Development for Diamond Quantum and Photonic Technologies
钻石量子和光子技术平台开发
  • 批准号:
    2888637
  • 财政年份:
    2023
  • 资助金额:
    $ 46.47万
  • 项目类别:
    Studentship
Development of remote quantum sensing using photonic technologies
利用光子技术开发远程量子传感
  • 批准号:
    2885425
  • 财政年份:
    2023
  • 资助金额:
    $ 46.47万
  • 项目类别:
    Studentship
Advanced Photonic Technologies for Communications (CRC- APTEC)
先进光子通信技术 (CRC- APTEC)
  • 批准号:
    CRC-2018-00184
  • 财政年份:
    2022
  • 资助金额:
    $ 46.47万
  • 项目类别:
    Canada Research Chairs
Small lasers: Towards future photonic technologies
小型激光器:迈向未来的光子技术
  • 批准号:
    RGPIN-2019-04726
  • 财政年份:
    2022
  • 资助金额:
    $ 46.47万
  • 项目类别:
    Discovery Grants Program - Individual
Canada-UK Quantum Technologies Call: Development of Highly Efficient, Portable, and Fiber-Integrated Photonic Platforms Based on Micro-Resonators
加拿大-英国量子技术呼吁:开发基于微谐振器的高效、便携式、光纤集成光子平台
  • 批准号:
    556325-2020
  • 财政年份:
    2022
  • 资助金额:
    $ 46.47万
  • 项目类别:
    Alliance Grants
RII Track-2 FEC: Laying the Foundation for Scalable Quantum Photonic Technologies
RII Track-2 FEC:为可扩展量子光子技术奠定基础
  • 批准号:
    2217786
  • 财政年份:
    2022
  • 资助金额:
    $ 46.47万
  • 项目类别:
    Cooperative Agreement
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了