The Universe at Extreme Scales

极端尺度的宇宙

基本信息

  • 批准号:
    ST/T00097X/1
  • 负责人:
  • 金额:
    $ 5.07万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2020
  • 资助国家:
    英国
  • 起止时间:
    2020 至 无数据
  • 项目状态:
    已结题

项目摘要

Research in particle physics and cosmology connects the largest scales, those of the Universe as a whole, with then smallest, namely those of fundamental particles. By trying to understand how the Universe evolved after the Big Bang, we may gain insight into which particles are yet to be discovered, e.g. at the Large Hadron Collider (LHC), and vice versa.Concerning the early Universe, it is commonly understood that it underwent a period of rapid expansion, called inflation. However, many open questions remain. For instance, what is the mechanism of cosmological inflation, and, can we linkinflation to quantum gravity, a theory that still eludes us? Interestingly, the recent observations of gravitational waves mayprovide a guide here. Inflation predicts a gravitational-wave background with properties depending on the details of theinflationary model. Hence if this background is observed, it may help us to further uncover details of the inflationary epochafter the Big Bang. Gravitational waves may also shed light on other puzzles, namely those related to dark energy and darkmatter. Again, possible alternative theories to Einstein's general theory of gravity, which are designed to solve the dark energy/matter puzzles, may leave their imprint in gravitational waves.In contrast to this, the LHC probes the smallest length scales, by colliding protons and nuclei at very high energies. In order to test the Standard Model (SM), our current highly successful theory of elementary particles, to the extreme, it is necessary to compute SM processes to high precision, and make predictions of physics beyond the Standard Model(BSM). The former can be done using advanced techniques which go beyond the usual Feynman diagrams. For the latter, one may take the viewpoint that the SM is an effective field theory (EFT), valid up to a certain energy scale only. To understand which novel BSM interactions can give rise to the SM at low energies, without conflicting with high-precisionfrom the LHC, is an outstanding challenge. Two main classes of candidate theories are so-called near-conformalgauge theories and Composite Higgs models, which both give rise to electroweak symmetry breaking and a light Higgs boson. They may even provide dark matter candidates.These theories have a commonality with the theory of quarks and gluons, Quantum Chromodynamics (QCD), namely that they are strongly interacting. This implies that they cannot be solved easily analytically, but are amenable to numerical simulations on high-performance computing facilities. The study of QCD provides a link between the physics of the earlyUniverse and elementary particles. Namely, as the Universe cooled down after the Big Bang, it underwent a series ofphase transitions. During one of those, quarks and gluons combined into hadrons, i.e. the particles we observe today. TheQCD phase transition is currently being explored at the LHC, by colliding heavy ions, motivating quantitative predictions onhow the QCD spectrum changes with temperature. In fact, even understanding the QCD spectrum in vacuum is still partly unsolved and may guide toward BSM physics.Quantum field theories (QFTs) describes physical processes across a vast range of energy scales, from fundamental interactions, as mentioned above, to low-dimensional and condensed matter systems. Many new phenomena and the detailed structure of QFTs are anticipated to lie beyond the confines of traditional perturbative methods or numericalsimulations. Dualities provide links between hitherto unrelated theories, making tractable questions previously consideredto be out of reach. With new dualities being discovered, the richness of QFT is larger than naively expected. Similarly,dynamics out of thermal equilibrium, the process of thermalisation, or the evolution of quantum information, relevant forblack hole dynamics, benefits from new approaches, some of which are motivated by quantum information.
粒子物理学和宇宙学的研究将最大的尺度,即整个宇宙的尺度,与然后是最小的尺度,即基本粒子的尺度联系起来。通过试图了解宇宙在大爆炸后是如何演化的,我们可能会洞察到哪些粒子尚未被发现,例如在大型强子对撞机(LHC)上,反之亦然。就早期宇宙而言,人们通常认为它经历了一段快速膨胀的时期,称为暴胀。然而,仍有许多悬而未决的问题。例如,宇宙膨胀的机制是什么,以及我们能否将膨胀与量子引力联系在一起,这是一个我们仍然无法理解的理论?有趣的是,最近对引力波的观测可能会在这方面提供指导。膨胀预测了引力波的背景,其性质取决于通货膨胀模型的细节。因此,如果观察到这一背景,它可能有助于我们进一步揭示大爆炸后暴涨时代的细节。引力波也可能解开其他谜题,即那些与暗能量和暗物质有关的谜题。同样,爱因斯坦一般引力理论的可能替代理论,旨在解决暗能量/物质之谜,可能会在引力波中留下印记。与此相反,大型强子对撞机探测的是最小的长度尺度,通过在非常高的能量下碰撞质子和原子核。为了将我们目前非常成功的基本粒子理论标准模型(SM)检验到极致,有必要对SM过程进行高精度的计算,并做出超出标准模型(BSM)的物理预测。前者可以使用超越通常费曼图的先进技术来实现。对于后者,人们可以认为SM是一种有效场论(EFT),只在一定的能量尺度下有效。要了解哪些新颖的BSM相互作用可以在低能量下产生SM,而不与LHC的高精度相互作用相冲突,这是一个突出的挑战。两类主要的候选理论是所谓的近构象算法理论和复合希格斯模型,它们都会导致电弱对称破缺和轻希格斯玻色子。它们甚至可能提供暗物质候选者。这些理论与夸克和胶子理论、量子色动力学(QCD)有一个共同点,即它们之间存在着强烈的相互作用。这意味着它们不能很容易地通过解析来解决,但可以在高性能计算设施上进行数值模拟。QCD的研究提供了早期宇宙物理和基本粒子之间的联系。也就是说,随着宇宙在大爆炸后冷却,它经历了一系列的相变。在其中一个过程中,夸克和胶子结合成强子,也就是我们今天观察到的粒子。大型强子对撞机目前正在探索QCD相变,通过碰撞重离子,激发对QCD光谱如何随温度变化的定量预测。事实上,即使对真空中的QCD光谱的理解也在一定程度上仍未解决,并可能引导我们走向BSM物理。量子场论(QFT)描述了从上面提到的基本相互作用到低维和凝聚物质系统的广泛能量范围的物理过程。许多新的现象和QFT的详细结构预计将超出传统微扰方法或数值模拟的范围。二元性提供了迄今不相关的理论之间的联系,使得以前被认为遥不可及的容易处理的问题变得遥不可及。随着新的二元性的发现,QFT的丰富性超出了天真的预期。同样,与黑洞动力学相关的脱离热平衡的动力学,即热正态化过程,或量子信息的演化,也受益于新的方法,其中一些方法是由量子信息驱动的。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
2-flavour $SU(2)$ gauge theory with exponential clover Wilson fermions
具有指数三叶草威尔逊费米子的 2 味 $SU(2)$ 规范理论
  • DOI:
    10.48550/arxiv.2401.00589
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bowes Laurence Sebastian
  • 通讯作者:
    Bowes Laurence Sebastian
Windows on the hadronic vacuum polarization contribution to the muon anomalous magnetic moment
  • DOI:
    10.1103/physrevd.106.074509
  • 发表时间:
    2022-10
  • 期刊:
  • 影响因子:
    5
  • 作者:
    C. Davies;C. DeTar;A. El-Khadra;S. Gottlieb;D. Hatton;A. Kronfeld;S. Lahert;G. Lepage;C. McNeile;E. Neil;C. Peterson;G. Ray;R. Van de Water;A. Vaquero
  • 通讯作者:
    C. Davies;C. DeTar;A. El-Khadra;S. Gottlieb;D. Hatton;A. Kronfeld;S. Lahert;G. Lepage;C. McNeile;E. Neil;C. Peterson;G. Ray;R. Van de Water;A. Vaquero
Progress report on computing the disconnected QCD and the QCD plus QED hadronic contributions to the muon’s anomalous magnetic moment.
关于计算断开 QCD 和 QCD 加 QED 强子对 μ 子反常磁矩贡献的进度报告。
Hadronic-vacuum-polarization contribution to the muon’s anomalous magnetic moment from four-flavor lattice QCD
强子真空极化对四味晶格 QCD 的 μ 子反常磁矩的贡献
  • DOI:
    10.1103/physrevd.101.034512
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    5
  • 作者:
    Davies, C. T. H.;DeTar, C.;El-Khadra, A. X.;Gámiz, E.;Gottlieb, Steven;Hatton, D.;Kronfeld, A. S.;Laiho, J.;Lepage, G. P.;Liu, Yuzhi
  • 通讯作者:
    Liu, Yuzhi
Singlet channel scattering in a composite Higgs model on the lattice
晶格上复合希格斯模型中的单线态通道散射
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Craig McNeile其他文献

Craig McNeile的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Craig McNeile', 18)}}的其他基金

New Applicant scheme in Theoretical Particle Physics.
理论粒子物理学的新申请人方案。
  • 批准号:
    ST/N005872/1
  • 财政年份:
    2015
  • 资助金额:
    $ 5.07万
  • 项目类别:
    Research Grant

相似海外基金

Collaborative Research: REU Site: BigDataX: From theory to practice in Big Data computing at eXtreme scales
合作研究:REU 网站:BigDataX:极限规模大数据计算从理论到实践
  • 批准号:
    2150500
  • 财政年份:
    2022
  • 资助金额:
    $ 5.07万
  • 项目类别:
    Standard Grant
Collaborative Research: REU Site: BigDataX: From theory to practice in Big Data computing at eXtreme scales
合作研究:REU 网站:BigDataX:极限规模大数据计算从理论到实践
  • 批准号:
    2150501
  • 财政年份:
    2022
  • 资助金额:
    $ 5.07万
  • 项目类别:
    Standard Grant
IntBIO COLLABORATIVE RESEARCH: Integrating trait diversity across hierarchical scales to predict biological resilience in an era of extreme environmental change
IntBIO 合作研究:整合不同层次尺度的性状多样性,以预测极端环境变化时代的生物恢复力
  • 批准号:
    2128303
  • 财政年份:
    2021
  • 资助金额:
    $ 5.07万
  • 项目类别:
    Standard Grant
IntBIO COLLABORATIVE RESEARCH: Integrating trait diversity across hierarchical scales to predict biological resilience in an era of extreme environmental change
IntBIO 合作研究:整合不同层次尺度的性状多样性,以预测极端环境变化时代的生物恢复力
  • 批准号:
    2128302
  • 财政年份:
    2021
  • 资助金额:
    $ 5.07万
  • 项目类别:
    Standard Grant
The Universe at Extreme Scales
极端尺度的宇宙
  • 批准号:
    ST/T000813/1
  • 财政年份:
    2020
  • 资助金额:
    $ 5.07万
  • 项目类别:
    Research Grant
CDS&E: Collaborative Research: Strategies for Managing Data in Uncertainty Quantification at Extreme Scales
CDS
  • 批准号:
    1808652
  • 财政年份:
    2018
  • 资助金额:
    $ 5.07万
  • 项目类别:
    Standard Grant
REU Site: Collaborative Research: BigDataX: From theory to practice in Big Data computing at eXtreme scales
REU 网站:协作研究:BigDataX:极限规模大数据计算从理论到实践
  • 批准号:
    1757964
  • 财政年份:
    2018
  • 资助金额:
    $ 5.07万
  • 项目类别:
    Standard Grant
REU Site: Collaborative Research: BigDataX: From theory to practice in Big Data computing at eXtreme scales
REU 网站:协作研究:BigDataX:极限规模大数据计算从理论到实践
  • 批准号:
    1757970
  • 财政年份:
    2018
  • 资助金额:
    $ 5.07万
  • 项目类别:
    Standard Grant
CDS&E: Collaborative Research: Strategies for Managing Data in Uncertainty Quantification at Extreme Scales
CDS
  • 批准号:
    1808576
  • 财政年份:
    2018
  • 资助金额:
    $ 5.07万
  • 项目类别:
    Standard Grant
PREEVENTS Track 2: Integrated Modeling of Extreme Space Weather Events from Electron to Global Scales
预防事件轨道 2:从电子到全球尺度的极端空间天气事件的综合建模
  • 批准号:
    1663800
  • 财政年份:
    2017
  • 资助金额:
    $ 5.07万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了