The Universe at Extreme Scales
极端尺度的宇宙
基本信息
- 批准号:ST/T000813/1
- 负责人:
- 金额:$ 160.16万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2020
- 资助国家:英国
- 起止时间:2020 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Research in particle physics and cosmology connects the largest scales, those of the Universe as a whole, with the smallest, namely those of fundamental particles. By trying to understand how the Universe evolved after the Big Bang, we may gain insight into which particles are yet to be discovered, e.g. at the Large Hadron Collider (LHC), and vice versa.Concerning the early Universe, it is commonly understood that it underwent a period of rapid expansion, called inflation. However, many open questions remain. For instance, what is the mechanism of cosmological inflation, and, can we link inflation to quantum gravity, a theory that still eludes us? Interestingly, the recent observations of gravitational waves may provide a guide here. Inflation predicts a gravitational-wave background with properties depending on the details of the inflationary model. Hence if this background is observed, it may help us to further uncover details of the inflationary epoch after the Big Bang. Gravitational waves may also shed light on other puzzles, namely those related to dark energy and dark matter. Again, possible alternative theories to Einstein's general theory of gravity, which are designed to solve the dark energy/matter puzzles, may leave their imprint in gravitational waves.In contrast to this, the LHC probes the smallest length scales, by colliding protons and nuclei at very high energies. In order to test the Standard Model (SM), our current highly successful theory of elementary particles, to the extreme, it is necessary to compute SM processes to high precision, and make predictions of physics beyond the Standard Model (BSM). The former can be done using advanced techniques which go beyond the usual Feynman diagrams. For the latter, one may take the viewpoint that the SM is an effective field theory (EFT), valid up to a certain energy scale only. To understand which novel BSM interactions can give rise to the SM at low energies, without conflicting with high-precision tests from the LHC, is an outstanding challenge. Two main classes of candidate theories are so-called near-conformal gauge theories and Composite Higgs models, which both give rise to electroweak symmetry breaking and a light Higgs boson. They may even provide dark matter candidates.These theories have a commonality with the theory of quarks and gluons, Quantum Chromodynamics (QCD), namely that they are strongly interacting. This implies that they cannot be solved easily analytically, but are amenable to numerical simulations on high-performance computing facilities. The study of QCD provides a link between the physics of the early Universe and elementary particles. Namely, as the Universe cooled down after the Big Bang, it underwent a series of phase transitions. During one of those, quarks and gluons combined into hadrons, i.e. the particles we observe today. The QCD phase transition is currently being explored at the LHC, by colliding heavy ions, motivating quantitative predictions on how the QCD spectrum changes with temperature. In fact, even understanding the QCD spectrum in vacuum is still partly unsolved and may guide toward BSM physics.Quantum field theories (QFTs) describes physical processes across a vast range of energy scales, from fundamental interactions, as mentioned above, to low-dimensional and condensed matter systems. Many new phenomena and the detailed structure of QFTs are anticipated to lie beyond the confines of traditional perturbative methods or numerical simulations. Dualities provide links between hitherto unrelated theories, making tractable questions previously considered to be out of reach. With new dualities being discovered, the richness of QFT is larger than naively expected. Similarly, dynamics out of thermal equilibrium, the process of thermalisation, or the evolution of quantum information, relevant for black hole dynamics, benefits from new approaches, some of which are motivated by quantum information theory.
粒子物理学和宇宙学的研究将最大的尺度(即整个宇宙的尺度)与最小的尺度(即基本粒子的尺度)联系起来。通过试图理解宇宙大爆炸后宇宙是如何演变的,我们可能会洞察到哪些粒子尚未被发现,例如在大型强子对撞机(LHC)中,反之亦然。关于早期宇宙,人们普遍认为它经历了一段被称为暴胀的快速膨胀时期。然而,仍有许多悬而未决的问题。例如,宇宙暴胀的机制是什么?我们能否将暴胀与量子引力联系起来?有趣的是,最近对引力波的观测可能会在这方面提供指导。暴胀理论预测的引力波背景的性质取决于暴胀模型的细节。因此,如果观测到这个背景,它可能有助于我们进一步揭示大爆炸后暴胀时代的细节。引力波也可能为其他谜题提供线索,即与暗能量和暗物质有关的谜题。爱因斯坦的广义引力理论旨在解决暗能量/物质的谜题,它的可能替代理论可能会在引力波中留下印记。与此相反,大型强子对撞机通过质子和原子核在非常高的能量下碰撞来探测最小的长度尺度。为了测试标准模型(SM),我们目前非常成功的基本粒子理论,到极端,有必要计算SM过程的高精度,并做出超越标准模型(BSM)的物理预测。前者可以使用超越通常费曼图的先进技术来完成。对于后者,人们可以认为SM是一种有效场论(EFT),仅在一定的能量尺度内有效。了解哪些新的BSM相互作用可以在低能量下产生SM,而不会与大型强子对撞机的高精度测试相冲突,是一个突出的挑战。两类主要的候选理论是所谓的近共形规范理论和复合希格斯模型,它们都产生了电弱对称破缺和轻希格斯玻色子。它们甚至可能提供暗物质候选者。这些理论与夸克和胶子的理论,量子色动力学(QCD)有一个共同点,即它们是强相互作用的。这意味着它们不能很容易地解析求解,但可以在高性能计算设备上进行数值模拟。QCD的研究提供了早期宇宙物理学和基本粒子之间的联系。也就是说,当宇宙在大爆炸后冷却下来时,它经历了一系列的相变。在其中一个过程中,夸克和胶子结合成强子,即我们今天观察到的粒子。QCD相变目前正在大型强子对撞机上进行探索,通过对撞重离子,对QCD光谱如何随温度变化进行定量预测。事实上,即使理解真空中的QCD谱也仍有部分未解之处,这可能会指导BSM物理学。量子场论(QFTs)描述了跨越大范围能量尺度的物理过程,从上面提到的基本相互作用到低维和凝聚态系统。许多新的现象和量子场的详细结构有望超越传统的微扰方法或数值模拟的限制。二元性提供了迄今为止不相关的理论之间的联系,使以前认为无法解决的问题成为可能。随着新的对偶性的发现,QFT的丰富性比人们天真的预期要大。同样,与黑洞动力学相关的热平衡动力学、热化过程或量子信息的演化也受益于新方法,其中一些方法是由量子信息理论驱动的。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Open charm mesons at nonzero temperature: results in the hadronic phase from lattice QCD
非零温度下的开粲介子:晶格 QCD 产生强子相
- DOI:10.48550/arxiv.2209.14681
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Aarts G
- 通讯作者:Aarts G
Non-zero temperature study of spin 1/2 charmed baryons using lattice gauge theory
利用晶格规范理论研究自旋1/2粲重子的非零温度
- DOI:10.48550/arxiv.2308.12207
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Aarts G
- 通讯作者:Aarts G
Interpreting machine learning functions as physical observables
将机器学习函数解释为物理可观测值
- DOI:10.22323/1.396.0248
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Aarts G
- 通讯作者:Aarts G
Lattice QCD at nonzero temperature and density
- DOI:10.1088/1742-6596/2207/1/012055
- 发表时间:2021-11
- 期刊:
- 影响因子:0
- 作者:G. Aarts;C. Allton;S. Hands;B. Jäger;S. Kim;M. Lombardo;A. Nikolaev;S. Ryan;J. Skullerud
- 通讯作者:G. Aarts;C. Allton;S. Hands;B. Jäger;S. Kim;M. Lombardo;A. Nikolaev;S. Ryan;J. Skullerud
Multimessenger cosmology: Correlating cosmic microwave background and stochastic gravitational wave background measurements
- DOI:10.1103/physrevd.103.023532
- 发表时间:2021-01-26
- 期刊:
- 影响因子:5
- 作者:Adshead, Peter;Afshordi, Niayesh;Tasinato, Gianmassimo
- 通讯作者:Tasinato, Gianmassimo
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gert Aarts其他文献
Towards a Shapley Value Graph Framework for Medical peer-influence
迈向医学同行影响力的 Shapley 价值图框架
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
J. Duell;M. Seisenberger;Gert Aarts;Shang;Xiuyi Fan - 通讯作者:
Xiuyi Fan
Phase Transitions in Particle Physics: Results and Perspectives from Lattice Quantum Chromo-Dynamics
粒子物理学中的相变:格点量子色动力学的结果与展望
- DOI:
10.1016/j.ppnp.2023.104070 - 发表时间:
2023-11-01 - 期刊:
- 影响因子:17.900
- 作者:
Gert Aarts;Joerg Aichelin;Chris Allton;Andreas Athenodorou;Dimitrios Bachtis;Claudio Bonanno;Nora Brambilla;Elena Bratkovskaya;Mattia Bruno;Michele Caselle;Costanza Conti;Roberto Contino;Leonardo Cosmai;Francesca Cuteri;Luigi Del Debbio;Massimo D’Elia;Petros Dimopoulos;Francesco Di Renzo;Tetyana Galatyuk;Jana N. Guenther;Uwe-Jens Wiese - 通讯作者:
Uwe-Jens Wiese
Physics-driven learning for inverse problems in quantum chromodynamics
基于物理驱动的量子色动力学逆问题学习
- DOI:
10.1038/s42254-024-00798-x - 发表时间:
2025-01-06 - 期刊:
- 影响因子:39.500
- 作者:
Gert Aarts;Kenji Fukushima;Tetsuo Hatsuda;Andreas Ipp;Shuzhe Shi;Lingxiao Wang;Kai Zhou - 通讯作者:
Kai Zhou
Scalar field restricted Boltzmann machine as an ultraviolet regulator
作为紫外线调节器的标量场受限玻尔兹曼机
- DOI:
10.1103/physrevd.109.034521 - 发表时间:
2023 - 期刊:
- 影响因子:5
- 作者:
Gert Aarts;B. Lucini;Chanju Park - 通讯作者:
Chanju Park
Particle creation and warm inflation
- DOI:
10.1016/j.physletb.2007.04.055 - 发表时间:
2007-06-21 - 期刊:
- 影响因子:
- 作者:
Gert Aarts;Anders Tranberg - 通讯作者:
Anders Tranberg
Gert Aarts的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gert Aarts', 18)}}的其他基金
Fields, Strings and Lattices: From the Inflationary Universe to High-Energy Colliders
场、弦和晶格:从暴胀宇宙到高能对撞机
- 批准号:
ST/P00055X/1 - 财政年份:2017
- 资助金额:
$ 160.16万 - 项目类别:
Research Grant
How hot will it get? Heavy quarks in the quark-gluon plasma
天气会有多热?
- 批准号:
ST/J000043/1 - 财政年份:2011
- 资助金额:
$ 160.16万 - 项目类别:
Research Grant
相似海外基金
Collaborative Research: REU Site: BigDataX: From theory to practice in Big Data computing at eXtreme scales
合作研究:REU 网站:BigDataX:极限规模大数据计算从理论到实践
- 批准号:
2150500 - 财政年份:2022
- 资助金额:
$ 160.16万 - 项目类别:
Standard Grant
Collaborative Research: REU Site: BigDataX: From theory to practice in Big Data computing at eXtreme scales
合作研究:REU 网站:BigDataX:极限规模大数据计算从理论到实践
- 批准号:
2150501 - 财政年份:2022
- 资助金额:
$ 160.16万 - 项目类别:
Standard Grant
IntBIO COLLABORATIVE RESEARCH: Integrating trait diversity across hierarchical scales to predict biological resilience in an era of extreme environmental change
IntBIO 合作研究:整合不同层次尺度的性状多样性,以预测极端环境变化时代的生物恢复力
- 批准号:
2128303 - 财政年份:2021
- 资助金额:
$ 160.16万 - 项目类别:
Standard Grant
IntBIO COLLABORATIVE RESEARCH: Integrating trait diversity across hierarchical scales to predict biological resilience in an era of extreme environmental change
IntBIO 合作研究:整合不同层次尺度的性状多样性,以预测极端环境变化时代的生物恢复力
- 批准号:
2128302 - 财政年份:2021
- 资助金额:
$ 160.16万 - 项目类别:
Standard Grant
CDS&E: Collaborative Research: Strategies for Managing Data in Uncertainty Quantification at Extreme Scales
CDS
- 批准号:
1808652 - 财政年份:2018
- 资助金额:
$ 160.16万 - 项目类别:
Standard Grant
REU Site: Collaborative Research: BigDataX: From theory to practice in Big Data computing at eXtreme scales
REU 网站:协作研究:BigDataX:极限规模大数据计算从理论到实践
- 批准号:
1757964 - 财政年份:2018
- 资助金额:
$ 160.16万 - 项目类别:
Standard Grant
REU Site: Collaborative Research: BigDataX: From theory to practice in Big Data computing at eXtreme scales
REU 网站:协作研究:BigDataX:极限规模大数据计算从理论到实践
- 批准号:
1757970 - 财政年份:2018
- 资助金额:
$ 160.16万 - 项目类别:
Standard Grant
CDS&E: Collaborative Research: Strategies for Managing Data in Uncertainty Quantification at Extreme Scales
CDS
- 批准号:
1808576 - 财政年份:2018
- 资助金额:
$ 160.16万 - 项目类别:
Standard Grant
PREEVENTS Track 2: Integrated Modeling of Extreme Space Weather Events from Electron to Global Scales
预防事件轨道 2:从电子到全球尺度的极端空间天气事件的综合建模
- 批准号:
1663800 - 财政年份:2017
- 资助金额:
$ 160.16万 - 项目类别:
Continuing Grant