Machine Learning for Space Physics
空间物理机器学习
基本信息
- 批准号:ST/T002255/1
- 负责人:
- 金额:$ 11.45万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2019
- 资助国家:英国
- 起止时间:2019 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Machine learning is a very hot topic in computer science these days. As a world we are generating ever greater volumes ofdata, and we need to find effective ways to gather and analyse that data, often by searching for regular patterns in datasets. The human eye is very good at picking out patterns either from images or from simple time series graphs. However,the human eye comes with its own biases: if you are trying to pick out blips in a single line trace on a screen your selectionmay not always be the same, but may depend on what has come before. Reproducibility is a huge issue here and onewhich impacts any kind of data science: if we are to do an experiment, or pick out interesting features from data, we want tomake sure we get the same result every time given the same initial input. Furthermore, as our input data streams getbigger and bigger, it is extremely time consuming (and a bit boring!) to look through all the data by eye to pick out the kindof features that we want. This is where the extremely powerful tool known as machine learning can help. In this work wepropose to use machine learning to pick out particular signatures from large catagloues of Space Physics data - but thecomputer analysis methods that we will develop will be applicable across multiple disciplines.The Space Physics problem we are interested in is called magnetic reconnection: it is a very energetic process which cantake place when two oppositely directed magnetic field lines meet, come together, and break. Right before reconnectionhappens the field lines are holding lots of energy, but as soon as they break this energy can be released into multiple formsincluding kinetic energy and thermal energy (heating). The field lines change shape after they break and these newly shapedfield lines can "ping" away from the site of reconnection, much like an elastic band that has been snapped. Thefield lines also carry with them charged particles, and these particles can heat up or change their flow direction as a resultof the transfer of energy.In the solar system everything happens on a giant scale, and magnetic reconnection can involve the magnetic field linesand plasma of the Sun and of several magnetised planets, including, but not limited to Mercury, Earth, Jupiter and Saturn.Spacecraft flying through the solar system have instruments which can measure magnetic fields and plasmas, and thuscan sample any changes associated with reconnection.The changes in the shape and orientation of magnetic fields and in the temperature and flow characteristics of chargedparticles can be observed by spacecraft. When scientists examine spacecraft data to search for evidence of thisreconnection process, they know what they are looking for in the field and plasma data. There is a huge amount ofspacecraft data: years and years' worth, with measurements taken several times a second. Reconnection can happenevery few minutes at some planets. It would be impossible for a human being to look through all the data and pick outevery time reconnection happened in our enormous catalogue.The purpose of this research is to teach the computer what reconnection signatures look like to a human eye, and to trainthe computer to pick these signatures out itself. This technique is called machine learning, and it has many advantages,because computers can be taught to work more quickly than humans, to give the same answer every time, and to not showbiases.The ultimate goal at the end of this project is to have trained the computer to select reconnection signatures, and to be ableto roll out this technique on multiple data sets from the solar system. This will be particularly useful for scientists who wantto conduct large studies of the behaviour of magnetic fields and plasma across the solar system, under different conditionsand over multiple years.
机器学习是当今计算机科学中的一个非常热门的话题。作为一个世界,我们正在产生越来越多的数据,我们需要找到有效的方法来收集和分析这些数据,通常是通过在数据集中搜索规则模式。人类的眼睛非常善于从图像或简单的时间序列图中挑选出模式。然而,人类的眼睛也有自己的偏见:如果你试图在屏幕上的单线轨迹中挑选光点,你的选择可能并不总是相同的,而是可能取决于之前出现的情况。再现性在这里是一个巨大的问题,它会影响到任何类型的数据科学:如果我们要做一个实验,或者从数据中挑选出有趣的特征,我们希望确保每次给定相同的初始输入,我们都会得到相同的结果。此外,随着我们的输入数据流变得越来越大,通过肉眼查看所有数据来挑选出我们想要的特征是非常耗时的(而且有点无聊!)。这就是被称为机器学习的强大工具可以提供帮助的地方。在这项工作中,我们建议使用机器学习从大型空间物理数据目录中挑选出特定的特征-但是我们将开发的计算机分析方法将适用于多个学科。我们感兴趣的空间物理问题被称为磁重联:这是一个非常有能量的过程,当两个方向相反的磁场线相遇,走到一起,然后断裂时就会发生。就在重新连接发生之前,磁场线持有大量能量,但一旦它们断开,这些能量可以以多种形式释放,包括动能和热能(加热)。磁场线在断裂后会改变形状,这些新形成的磁场线会从重新连接的位置“砰”地一声离开,就像一根松紧带被折断了一样。电场线也携带带电粒子,这些粒子可以加热或改变它们的流动方向作为能量转移的结果。在太阳系中,一切都发生在一个巨大的规模上,磁重联可能涉及太阳和几个磁化行星的磁力线和等离子体,包括但不限于水星、地球、木星和土星。穿越太阳系的航天器上有仪器可以测量磁场和等离子体,因此可以对与重联有关的任何变化进行采样。航天器可以观测到磁场形状和方向的变化,以及带电粒子的温度和流动特性的变化。当科学家们检查宇宙飞船的数据来寻找这种重新连接过程的证据时,他们知道他们在寻找磁场和等离子体数据。有大量的航天器数据:年复一年的价值,每秒进行几次测量。在一些行星上,重联每隔几分钟就会发生一次。人类不可能浏览所有的数据,并在我们庞大的目录中挑选出每次重新连接发生的时间。这项研究的目的是教会计算机人眼看到的重连签名是什么样子,并训练计算机自己挑选这些签名。这种技术被称为机器学习,它有很多优点,因为计算机可以被教导比人类更快地工作,每次都给出相同的答案,而且不会表现出偏见。这个项目的最终目标是训练计算机选择重新连接签名,并能够在来自太阳系的多个数据集上推出这项技术。这对于那些想要在不同条件和多年时间里对整个太阳系的磁场和等离子体的行为进行大规模研究的科学家来说尤其有用。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Machine Learning Applications to Kronian Magnetospheric Reconnection Classification
机器学习在 Kronian 磁层重联分类中的应用
- DOI:10.3389/fspas.2020.600031
- 发表时间:2021
- 期刊:
- 影响因子:3
- 作者:Garton T
- 通讯作者:Garton T
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sebastian Hoenig其他文献
Sebastian Hoenig的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sebastian Hoenig', 18)}}的其他基金
AGN dust emission as a standard candle in the LSST era
AGN粉尘排放作为LSST时代的标准蜡烛
- 批准号:
ST/N000870/1 - 财政年份:2016
- 资助金额:
$ 11.45万 - 项目类别:
Research Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Understanding structural evolution of galaxies with machine learning
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
煤矿安全人机混合群智感知任务的约束动态多目标Q-learning进化分配
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于领弹失效考量的智能弹药编队短时在线Q-learning协同控制机理
- 批准号:62003314
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
集成上下文张量分解的e-learning资源推荐方法研究
- 批准号:61902016
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
具有时序迁移能力的Spiking-Transfer learning (脉冲-迁移学习)方法研究
- 批准号:61806040
- 批准年份:2018
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
基于Deep-learning的三江源区冰川监测动态识别技术研究
- 批准号:51769027
- 批准年份:2017
- 资助金额:38.0 万元
- 项目类别:地区科学基金项目
具有时序处理能力的Spiking-Deep Learning(脉冲深度学习)方法研究
- 批准号:61573081
- 批准年份:2015
- 资助金额:64.0 万元
- 项目类别:面上项目
基于有向超图的大型个性化e-learning学习过程模型的自动生成与优化
- 批准号:61572533
- 批准年份:2015
- 资助金额:66.0 万元
- 项目类别:面上项目
E-Learning中学习者情感补偿方法的研究
- 批准号:61402392
- 批准年份:2014
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: CyberTraining: Pilot: Cyberinfrastructure-Enabled Machine Learning for Understanding and Forecasting Space Weather
合作研究:网络培训:试点:网络基础设施支持的机器学习用于理解和预测空间天气
- 批准号:
2320148 - 财政年份:2023
- 资助金额:
$ 11.45万 - 项目类别:
Standard Grant
Collaborative Research: CyberTraining: Pilot: Cyberinfrastructure-Enabled Machine Learning for Understanding and Forecasting Space Weather
合作研究:网络培训:试点:网络基础设施支持的机器学习用于理解和预测空间天气
- 批准号:
2320147 - 财政年份:2023
- 资助金额:
$ 11.45万 - 项目类别:
Standard Grant
Hunting for Rare Treasure with Machine Learning: Gravitational Lensing and Glitches in the Euclid space telescope and Vera Rubin Observatory
利用机器学习寻找稀有宝藏:欧几里得太空望远镜和维拉鲁宾天文台的引力透镜和故障
- 批准号:
2888074 - 财政年份:2023
- 资助金额:
$ 11.45万 - 项目类别:
Studentship
Development of Deep Machine Learning Method for Generalized State Space Models Using Prior Knowledge Constraints and Weak Learning
使用先验知识约束和弱学习的广义状态空间模型深度机器学习方法的开发
- 批准号:
23H00471 - 财政年份:2023
- 资助金额:
$ 11.45万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
A machine learning approach to physically self-consistent 3D general circulation models in the study of sub-Neptune exoplanets with the James Webb Space Telescope
使用詹姆斯·韦伯太空望远镜研究海王星以下系外行星时采用机器学习方法实现物理上自洽的 3D 大气环流模型
- 批准号:
569321-2022 - 财政年份:2022
- 资助金额:
$ 11.45万 - 项目类别:
Postgraduate Scholarships - Doctoral
Basic research for an extension of space-scale in classical molecular dynamics calculations by introducing machine-learning potential
通过引入机器学习潜力来扩展经典分子动力学计算中的空间尺度的基础研究
- 批准号:
22K12065 - 财政年份:2022
- 资助金额:
$ 11.45万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A Novel Machine Learning Approach to Spectral Deconvolution from the Hitomi X-Ray Space Telescope
瞳 X 射线太空望远镜光谱反卷积的新型机器学习方法
- 批准号:
575492-2022 - 财政年份:2022
- 资助金额:
$ 11.45万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Machine learning approach to identifying halos in redshift-space
识别红移空间光晕的机器学习方法
- 批准号:
562654-2021 - 财政年份:2021
- 资助金额:
$ 11.45万 - 项目类别:
University Undergraduate Student Research Awards
Investigations of Chemical Space using Machine Learning
使用机器学习研究化学空间
- 批准号:
2600637 - 财政年份:2021
- 资助金额:
$ 11.45万 - 项目类别:
Studentship
A Virtual Conference on Applications of Statistical Methods and Machine Learning in the Space Sciences; Boulder, Colorado; March 22-26, 2021 or June 28 - July 2, 2021
统计方法和机器学习在空间科学中的应用虚拟会议;
- 批准号:
2114219 - 财政年份:2021
- 资助金额:
$ 11.45万 - 项目类别:
Standard Grant