The Gravitational wave Optical Transient Observer

引力波光瞬变观测器

基本信息

  • 批准号:
    ST/T003103/1
  • 负责人:
  • 金额:
    $ 281.46万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2020
  • 资助国家:
    英国
  • 起止时间:
    2020 至 无数据
  • 项目状态:
    未结题

项目摘要

The direct detection of gravitational waves using the Ligo gravitational wave detectors in September 2015 was one of humankind's greatest achievements. It was the equivalent of measuring the distance to the nearest star to our Sun better than the thickness of a human hair. Gravitational waves offer a route straight to the heart of the most extreme systems in nature and environments that are inaccessible to conventional astronomical techniques. This makes them powerful probes of extreme conditions and beacons to the distant universe.However, gravitational wave detectors are currently not able to accurately pin-point the location in the sky of these waves. It will be rather like the bird watcher hearing an interesting call in the distance; the direction can be determined roughly but then the searcher must scan visually for signs of movement to pinpoint the cause. Although merging black holes are not expected to show an immediate optical signal, merging neutron stars are.The problem is that the detectors can only locate the merging system to an area thousands of times the area of the moon. If the region can be mapped quickly enough new sources can be identified which were not present before the event took place. This idea was spectacularly demonstrated when in Sept 2017 a merging neutron star binary was detected first in gravitational waves and then a few days later in optical, radio and X-rays. This event became one of the most well studied astronomical events ever made and indicated that gold may well originate in these violent events.In 2015, the Universities of Warwick and Monash in Australia developed the Gravitational-wave Optical Transient Observer (GOTO). The concept was to have a series of telescopes on two mounts allowing us to cover 100 times the area of the moon in one go. As soon as a gravitational wave was triggered the robotic telescope would start taking images of the part of the sky where the event was expected to be. Since then a number of UK and international groups have joined the GOTO consortium and a prototype has been operating on the mountain top of La Palma in the Canaries.This proposal aims to obtain funding so that the GOTO facility on La Palma can be extended to 16 telescopes covering 4 times as much as the prototype and to build a copy of GOTO in Australia. This would allow us to cover most of the observable sky and ensure that we obtain an image of the same patch of sky every few days which is essential if we are going to weed out new sources which are not the gravitational wave event but other events such as supernovae, accreting binaries or flare stars. Although somewhat confusing the search for neutron stars mergers, those other types of sources are at the same time another very useful science product that the project can produce. Our design ensures we are able to compete with other world class facilities. Our prototype telescopes are already providing excellent data showing our believe in this project will pay off.
2015年9月,利用Ligo引力波探测器直接探测到引力波是人类最伟大的成就之一。这相当于测量离太阳最近的恒星的距离,比人类头发的厚度还要好。引力波提供了一条通往自然和环境中最极端系统的核心的路线,这是传统天文技术无法企及的。这使它们成为极端条件下的强大探测器和遥远宇宙的灯塔。然而,引力波探测器目前还不能准确地定位这些引力波在天空中的位置。这就像一个观鸟者听到远处有趣的叫声一样;方向可以大致确定,但搜索者必须通过视觉扫描寻找运动迹象,以查明原因。虽然合并的黑洞不会立即显示出光学信号,但合并的中子星会。问题是,探测器只能将合并系统定位在月球面积的数千倍的区域。如果能足够快地绘制出该地区的地图,就能识别出地震发生前不存在的新震源。2017年9月,一颗合并的中子星双星首先在引力波中被探测到,几天后又在光学、无线电和x射线中被探测到,这一想法得到了惊人的证明。这一事件成为有史以来被研究得最多的天文事件之一,并表明黄金很可能起源于这些剧烈的事件。2015年,澳大利亚沃里克大学和莫纳什大学开发了引力波光学瞬态观测仪(GOTO)。这个概念是在两个支架上安装一系列望远镜,使我们能够一次覆盖月球面积的100倍。一旦引力波被触发,机器人望远镜就会开始拍摄预计会发生引力波的那部分天空的图像。从那时起,一些英国和国际组织加入了GOTO联盟,一个原型已经在加那利群岛的拉帕尔马山顶运行。该提案旨在获得资金,使拉帕尔马的GOTO设施可以扩展到16个望远镜,覆盖的面积是原型的4倍,并在澳大利亚建造一个GOTO的副本。这将使我们能够覆盖大部分可观测的天空,并确保我们每隔几天获得同一片天空的图像,这是必不可少的,如果我们要排除新的来源,这些来源不是引力波事件,而是其他事件,如超新星,吸积双星或耀斑星。尽管对中子星合并的研究有些混乱,但与此同时,这些其他类型的源是该项目可以产生的另一个非常有用的科学产品。我们的设计确保我们有能力与其他世界一流的设施竞争。我们的原型望远镜已经提供了出色的数据,表明我们对这个项目的信心将会得到回报。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
OGLE-2019-BLG-1180Lb: Discovery of a Wide-orbit Jupiter-mass Planet around a Late-type Star
OGLE-2019-BLG-1180Lb:发现一颗围绕晚型恒星的宽轨道木星质量行星
  • DOI:
    10.3847/1538-3881/ad0723
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Chung S
  • 通讯作者:
    Chung S
GRB 240209A: GOTO optical counterpart candidate
GRB 240209A:GOTO 光学对应候选
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Belkin S.
  • 通讯作者:
    Belkin S.
GRB 230911A: The First Discovery of a Fermi GRB Optical Counterpart with the Gravitational-wave Optical Transient Observer (GOTO)
GRB 230911A:首次发现费米伽马暴光学对应物与引力波光瞬变观测器(GOTO)
  • DOI:
    10.3847/2515-5172/ad1876
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Belkin S
  • 通讯作者:
    Belkin S
Observational constraints on the optical and near-infrared emission from the neutron star–black hole binary merger candidate S190814bv
  • DOI:
    10.1051/0004-6361/202037669
  • 发表时间:
    2020-02
  • 期刊:
  • 影响因子:
    6.5
  • 作者:
    K. Ackley;L. Amati;C. Barbieri;F. Bauer;S. Benetti;M. Bernardini;K. Bhirombhakdi;M. Botticella-M.-Bottice
  • 通讯作者:
    K. Ackley;L. Amati;C. Barbieri;F. Bauer;S. Benetti;M. Bernardini;K. Bhirombhakdi;M. Botticella-M.-Bottice
Target-of-opportunity Observations of Gravitational-wave Events with Vera C. Rubin Observatory
  • DOI:
    10.3847/1538-4365/ac617c
  • 发表时间:
    2021-11
  • 期刊:
  • 影响因子:
    0
  • 作者:
    I. Andreoni;R. Margutti;O. Salafia;B. Parazin;V. Villar;M. Coughlin;P. Yoachim;K. Mortensen
  • 通讯作者:
    I. Andreoni;R. Margutti;O. Salafia;B. Parazin;V. Villar;M. Coughlin;P. Yoachim;K. Mortensen
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Danny Steeghs其他文献

Doppler tomography in fusion plasmas and astrophysics
融合等离子体和天体物理学中的多普勒断层扫描
  • DOI:
    10.1088/0741-3335/57/1/014021
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    2.2
  • 作者:
    M. Salewski;Benedikt Geiger;B. Heidbrink;A. Jacobsen;S. Korsholm;F. Leipold;Jens Madsen;D. Moseev;S. Nielsen;Jesper Rasmussen;Luke Stagner;Danny Steeghs;M. Stejner;Giovani Tardini;Markus Weiland;the Asdex Upgrade team
  • 通讯作者:
    the Asdex Upgrade team
The Structure and the Partial Opacity of the Spiral Shocks on the Novalike Cataclysmic Variables
  • DOI:
    10.1007/s10509-006-9140-x
  • 发表时间:
    2006-09-19
  • 期刊:
  • 影响因子:
    1.500
  • 作者:
    Christos Papadimitriou;Emilios Harlaftis;Danny Steeghs
  • 通讯作者:
    Danny Steeghs

Danny Steeghs的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Danny Steeghs', 18)}}的其他基金

The Gravitational wave Optical Transient Observer - facility operations 2024-2027
引力波光瞬变观测器 - 设施运营 2024-2027
  • 批准号:
    ST/Z000165/1
  • 财政年份:
    2024
  • 资助金额:
    $ 281.46万
  • 项目类别:
    Research Grant
Warwick Astronomy & Astrophysics Consolidated Grant 2023-2026
沃里克天文学
  • 批准号:
    ST/X001121/1
  • 财政年份:
    2023
  • 资助金额:
    $ 281.46万
  • 项目类别:
    Research Grant
The Gravitational wave Optical Transient Observer
引力波光瞬变观测器
  • 批准号:
    ST/T007184/1
  • 财政年份:
    2020
  • 资助金额:
    $ 281.46万
  • 项目类别:
    Research Grant
The astrophysics of accretion in compact binaries
致密双星吸积的天体物理学
  • 批准号:
    PP/D005914/1
  • 财政年份:
    2007
  • 资助金额:
    $ 281.46万
  • 项目类别:
    Fellowship

相似国自然基金

脐带间充质干细胞微囊联合低能量冲击波治疗神经损伤性ED的机制研究
  • 批准号:
    82371631
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
WASP家族蛋白WAVE2调节T细胞静息和活化的机制研究
  • 批准号:
    32300748
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
四阶奇异摄动Bi-wave问题各向异性网格有限元方法一致收敛性研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
细胞骨架调节蛋白WAVE2维护免疫耐受及抑制自身免疫的机制研究
  • 批准号:
    32270940
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
WAVE1/KMT2A甲基化作用调控上皮性卵巢癌增殖转移的机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
WAVE1 调控脓毒症免疫代谢反应的分子机制
  • 批准号:
    2021JJ31110
  • 批准年份:
    2021
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
利用光学系统研究空间Rogue Wave的控制和预测
  • 批准号:
    12004282
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
WASp家族Verprolin同源蛋白WAVE2调节T细胞免疫稳态和抗原特异性免疫应答的机制研究
  • 批准号:
    31970841
  • 批准年份:
    2019
  • 资助金额:
    59.0 万元
  • 项目类别:
    面上项目
南大洋复杂地形下底部低频流动能耗散时空变异和耗散路径的研究
  • 批准号:
    41906027
  • 批准年份:
    2019
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目
Hem1在胎肝造血干细胞迁移定居骨髓的作用及机制
  • 批准号:
    81860026
  • 批准年份:
    2018
  • 资助金额:
    35.0 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

The Gravitational wave Optical Transient Observer - facility operations 2024-2027
引力波光瞬变观测器 - 设施运营 2024-2027
  • 批准号:
    ST/Z000165/1
  • 财政年份:
    2024
  • 资助金额:
    $ 281.46万
  • 项目类别:
    Research Grant
Study of silicon nitride thin films as optical mirror coatings for cryogenic based gravitational wave detectors
氮化硅薄膜作为低温引力波探测器光学镜涂层的研究
  • 批准号:
    ST/X00533X/1
  • 财政年份:
    2023
  • 资助金额:
    $ 281.46万
  • 项目类别:
    Training Grant
Probing the Universe's expansion and gravitational wave sources with ground-based optical telescopes
用地面光学望远镜探测宇宙的膨胀和引力波源
  • 批准号:
    2308193
  • 财政年份:
    2023
  • 资助金额:
    $ 281.46万
  • 项目类别:
    Standard Grant
Investigation of Quantum Noise Reduction Method using Quantum Locking with Optical Spring for Space Gravitational Wave Detector DECIGO
空间引力波探测器DECIGO光学弹簧量子锁定量子降噪方法研究
  • 批准号:
    23KJ1121
  • 财政年份:
    2023
  • 资助金额:
    $ 281.46万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Detecting optical counterparts to gravitational-wave events with GOTO and developing techniques to enable accurate measurements of gravitational waves
使用 GOTO 检测引力波事件的光学对应物,并开发能够精确测量引力波的技术
  • 批准号:
    2903944
  • 财政年份:
    2023
  • 资助金额:
    $ 281.46万
  • 项目类别:
    Studentship
Development of a signal amplification technique using nonlinear optical effects for next-generation gravitational wave detectors
开发利用非线性光学效应的下一代引力波探测器的信号放大技术
  • 批准号:
    23KJ0954
  • 财政年份:
    2023
  • 资助金额:
    $ 281.46万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
CAREER: Developing Techniques for Atom-Based Gravitational Wave Detection and Dark Matter Searches with a Multiplexed Optical Lattice Clock
职业:利用多路复用光学晶格钟开发基于原子的引力波探测和暗物质搜索技术
  • 批准号:
    2143870
  • 财政年份:
    2022
  • 资助金额:
    $ 281.46万
  • 项目类别:
    Continuing Grant
RUI: Investigating Ice Formation on Optical Surfaces and Material Properties for Cryogenic Gravitational Wave Detectors
RUI:研究低温引力波探测器光学表面上的冰形成和材料特性
  • 批准号:
    2208090
  • 财政年份:
    2022
  • 资助金额:
    $ 281.46万
  • 项目类别:
    Standard Grant
Time-domain astrophysics with the gravitational wave optical transient observer
利用引力波光学瞬态观测器进行时域天体物理学
  • 批准号:
    2737089
  • 财政年份:
    2022
  • 资助金额:
    $ 281.46万
  • 项目类别:
    Studentship
Optical coating optimisation to enable the transfer of technologies from gravitational wave detection to quantum and intense light-matter experiments
光学涂层优化,实现从引力波探测到量子和强光物质实验的技术转移
  • 批准号:
    ST/W005778/1
  • 财政年份:
    2022
  • 资助金额:
    $ 281.46万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了