Measuring the electron electric dipole moment using an array of ultracold molecules
使用超冷分子阵列测量电子电偶极矩
基本信息
- 批准号:ST/V00428X/1
- 负责人:
- 金额:$ 84.61万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Fellowship
- 财政年份:2021
- 资助国家:英国
- 起止时间:2021 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The Standard Model of particle physics is one of the greatest achievements of modern science. It has been fabulously successful in classifying the fundamental particles and explaining how they behave. Nevertheless, it is widely accepted that the Standard Model is incomplete because it fails to explain several important observations. One prominent example is the excess of matter over antimatter in the universe. The Standard Model predicts almost equal amounts of matter and antimatter, but observations show the universe contains only matter. This contradiction is one of the great unsolved problems in modern physics and a major deficiency of our most fundamental theory.To build a more complete picture of the universe, physicists are striving to reveal what lies beyond the Standard Model. This is an important objective of much of the research being done at gigantic particle accelerators. There is an alternative, and ingenious, way to explore the same problem - measure the shape of an electron. The new forces needed to explain the matter/antimatter imbalance also make electrons slightly non-spherical. This distortion - known as the electric dipole moment - changes the energy of an electron in an electric field, and that tiny change is amplified when the electron is bound to a molecule. I propose to build an apparatus that uses an array of molecules cooled to microkelvin temperatures to make an extremely precise measurement of the electron's shape. With very careful measurements, such table-top experiments enable us to probe energies equal to, or even above, those reached by the particle accelerators. Such marvellous precision has become possible by my recent success in cooling molecules to ultracold temperature. That technique is the foundation of this proposal.My plan is to decelerate a beam of ytterbium monofluoride molecules to rest using the forces exerted by carefully tuned laser light, trap these molecules and cool them to a few microkelvin. Then, I will load them into an array of traps formed by standing waves of light. The array contains millions of individual traps and isolates the molecules from one another, creating a pristine environment for measuring the electron's electric dipole moment. This measurement is done by watching how the spin of the molecules precesses in applied magnetic and electric fields, similar to the precession of a gyroscope or spinning top in a gravitational field. An electric dipole moment changes this precession rate, though only by the tiniest amount. That tiny change is detected more easily if the spin precesses for a long time. Because molecules are confined and isolated in the array, the time can be thousands of times longer than in current experiments. That makes my measurement scheme far more sensitive than any other experiment, allowing me to search for new physics with unprecedented precision.
粒子物理学的标准模型是现代科学最伟大的成就之一。它在基本粒子的分类和解释它们的行为方面取得了惊人的成功。然而,人们普遍认为标准模型是不完整的,因为它未能解释几个重要的观察结果。一个突出的例子是宇宙中物质超过反物质。标准模型预测物质和反物质的数量几乎相等,但观测表明宇宙只包含物质。这一矛盾是现代物理学中尚未解决的重大问题之一,也是我们最基本理论的一个主要缺陷。为了构建一幅更完整的宇宙图景,物理学家们正在努力揭示标准模型之外的东西。这是在巨大的粒子加速器上进行的许多研究的一个重要目标。还有另一种巧妙的方法来探索同样的问题--测量电子的形状。解释物质/反物质不平衡所需的新力量也使电子略微非球形。这种扭曲--被称为电偶极矩--改变了电场中电子的能量,当电子与分子结合时,这种微小的变化被放大。我建议建造一个仪器,它使用冷却到微开温度的分子阵列来对电子的形状进行极其精确的测量。通过非常仔细的测量,这种桌面实验使我们能够探测到与粒子加速器所达到的能量相等甚至更高的能量。我最近成功地将分子冷却到超冷温度,使这种惊人的精确度成为可能。我的计划是利用精心调谐的激光所施加的力,使一束氟化镱分子减速到静止状态,捕获这些分子,并将它们冷却到几个微开尔文。然后,我将把它们装入由驻波光形成的陷阱阵列中。该阵列包含数百万个单独的陷阱,并将分子彼此隔离,为测量电子的电偶极矩创造了一个原始的环境。这种测量是通过观察分子的自旋如何在外加磁场和电场中进动来完成的,类似于陀螺仪或旋转陀螺在引力场中的进动。电偶极矩改变了这种旋进速率,尽管改变的幅度很小。如果自旋进动持续很长一段时间,那么这种微小的变化就更容易被检测到。由于分子在阵列中被限制和隔离,因此时间可能比当前实验长数千倍。这使得我的测量方案比任何其他实验都更加敏感,使我能够以前所未有的精度寻找新的物理学。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Systematic errors arising from polarization imperfections in measurements of the electron's electric dipole moment
电子电偶极矩测量中极化缺陷引起的系统误差
- DOI:10.1103/physrevresearch.5.043233
- 发表时间:2023
- 期刊:
- 影响因子:4.2
- 作者:Ho C
- 通讯作者:Ho C
Measuring the nuclear magnetic quadrupole moment in heavy polar molecules
测量重极性分子的核磁四极矩
- DOI:10.3389/fphy.2023.1086980
- 发表时间:2023
- 期刊:
- 影响因子:3.1
- 作者:Ho C
- 通讯作者:Ho C
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jongseok Lim其他文献
Quantum control in two-dimensional Fourier-transform spectroscopy
二维傅里叶变换光谱中的量子控制
- DOI:
10.1103/physreva.84.013425 - 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Jongseok Lim;Han;Sangkyung Lee;Jaewook Ahn - 通讯作者:
Jaewook Ahn
Ultrafast IR spectroscopic study of coherent phonons and dynamic spin–lattice coupling in multiferroic LuMnO3
多铁性 LuMnO3 中相干声子和动态自旋晶格耦合的超快红外光谱研究
- DOI:
10.1088/1367-2630/12/2/023017 - 发表时间:
2010 - 期刊:
- 影响因子:3.3
- 作者:
K. Jang;Jongseok Lim;Jaewook Ahn;Ji‐Hee Kim;K. Yee;J. Ahn;S. Cheong - 通讯作者:
S. Cheong
Effect of nonuniform continuum density of states on a Fano resonance in semiconductor quantum wells
非均匀连续态密度对半导体量子阱法诺共振的影响
- DOI:
10.1103/physrevb.80.035322 - 发表时间:
2009 - 期刊:
- 影响因子:3.7
- 作者:
Jongseok Lim;Woo;H. Sim;R. Averitt;J. Zide;A. Gossard;Jaewook Ahn - 通讯作者:
Jaewook Ahn
Ultrafast Rabi flopping in a three-level energy ladder.
超快拉比在三级能梯中失败。
- DOI:
10.1364/ol.37.003378 - 发表时间:
2012 - 期刊:
- 影响因子:3.6
- 作者:
Jongseok Lim;Kanghee Lee;Jaewook Ahn - 通讯作者:
Jaewook Ahn
Unilateral musical hallucination after a hybrid cochlear implantation
- DOI:
10.1016/j.genhosppsych.2014.09.014 - 发表时间:
2015-01-01 - 期刊:
- 影响因子:
- 作者:
Soohyun Joe;Jangho Park;Jongseok Lim;Choongman Park - 通讯作者:
Choongman Park
Jongseok Lim的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jongseok Lim', 18)}}的其他基金
Ultra-low noise magnetic environments
超低噪声磁场环境
- 批准号:
ST/Y509978/1 - 财政年份:2024
- 资助金额:
$ 84.61万 - 项目类别:
Research Grant
相似国自然基金
Muon--electron转换过程的实验研究
- 批准号:11335009
- 批准年份:2013
- 资助金额:360.0 万元
- 项目类别:重点项目
Potyvirus柱状内含体-胞间连丝连接装置的三维重构及病毒胞间运动研究
- 批准号:31070129
- 批准年份:2010
- 资助金额:34.0 万元
- 项目类别:面上项目
红树对重金属的定位累积及耦合微观分析与耐受策略研究
- 批准号:30970527
- 批准年份:2009
- 资助金额:35.0 万元
- 项目类别:面上项目
废水中难降解有机污染物的电子束辐照降解机理
- 批准号:50578090
- 批准年份:2005
- 资助金额:30.0 万元
- 项目类别:面上项目
铁磁性超导体的微观电子态和相图的理论研究
- 批准号:10574063
- 批准年份:2005
- 资助金额:26.0 万元
- 项目类别:面上项目
相似海外基金
Electron electric dipole moment search by using polarized ultracold molecule s
利用极化超冷分子进行电子电偶极矩搜索
- 批准号:
23K20858 - 财政年份:2024
- 资助金额:
$ 84.61万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Distinct Ion Channel Pools and Intercalated Disk Nanoscale Structure Regulate Cardiac Conduction
独特的离子通道池和闰盘纳米级结构调节心脏传导
- 批准号:
10676368 - 财政年份:2023
- 资助金额:
$ 84.61万 - 项目类别:
Commercial translation of high-density carbon fiber electrode arrays for multi-modal analysis of neural microcircuits
用于神经微电路多模态分析的高密度碳纤维电极阵列的商业转化
- 批准号:
10761217 - 财政年份:2023
- 资助金额:
$ 84.61万 - 项目类别:
Fixed-Target Platforms for Time-Resolved Crystallography
用于时间分辨晶体学的固定目标平台
- 批准号:
10634328 - 财政年份:2023
- 资助金额:
$ 84.61万 - 项目类别:
Bacterial Adhesion Inhibition and Biofilm Disruption by Adaptive Piezoelectric Biomaterial
自适应压电生物材料抑制细菌粘附和破坏生物膜
- 批准号:
10668030 - 财政年份:2023
- 资助金额:
$ 84.61万 - 项目类别:
Dynamin-related protein 1 and mitochondrial fission adapters regulate presynaptic function
动力相关蛋白 1 和线粒体裂变接头调节突触前功能
- 批准号:
10660812 - 财政年份:2023
- 资助金额:
$ 84.61万 - 项目类别:
Measurement of Electron Drift Velocity in GaN under High Electric Field
高电场下GaN电子漂移速度的测量
- 批准号:
23K13362 - 财政年份:2023
- 资助金额:
$ 84.61万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
New area electron accelerator with high electric field and high Q by ultra-high frequency photonic assist accelerator
超高频光子辅助加速器高电场高Q值新领域电子加速器
- 批准号:
23H00123 - 财政年份:2023
- 资助金额:
$ 84.61万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Ultracold EEDM - Measuring The Electron's Electric Dipole Moment Using Ultracold Molecules
超冷 EEDM - 使用超冷分子测量电子的电偶极矩
- 批准号:
EP/X030180/1 - 财政年份:2023
- 资助金额:
$ 84.61万 - 项目类别:
Research Grant