Solar and Magnetospheric Plasmas: Theory and Application
太阳和磁层等离子体:理论与应用
基本信息
- 批准号:ST/W001195/1
- 负责人:
- 金额:$ 113.31万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2022
- 资助国家:英国
- 起止时间:2022 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The Solar and Magnetospheric Theory Group (SMTG) of the University of St Andrews will work on the fundamental physical processes occurring in the Sun's atmosphere and the terrestrial magnetosphere to address the key STFC Roadmap question "How does the Sun influence the environment of the Earth and the rest of the Solar System?" In particular, the proposed work addresses questions, such as:i) How do magnetic fields emerging from below the solar surface release energy when interacting with the solar atmosphere?ii) Why is the Sun's outer atmosphere (the corona) over 100 times hotter than its visible surface? iii) How do multiscale processes in the solar surface affect the evolution of the Sun's global magnetic field and when it becomes unstable? iv) Can we use physics-based modelling techniques to predict solar eruptions and their effect on Earth?v) What causes the observed waves in the Earth's magnetosphere and how can models be used to improve our interpretation of magnetospheric observations ? Finding answers to these key questions calls for a range of expertise. The SMTG is excellently positioned to answer these questions, since we study a wide variety of physical phenomena using a combination of fundamental theory, analytical models, computer simulations, forward modelling and observations. This mixture of detailed modelling and comparison with observations from several satellite missions is essential to make progress. The topics we will investigate, using plasma theory, are: i) the complex interplay of magnetic flux emergence, reconnection and particle acceleration,ii) the physical mechanisms responsible for keeping the solar atmosphere much hotter than the solar surface (atmospheric heating), iii) the evolution of the structure and stability of the global coronal magnetic field, iv) the development of physics-based and data-driven methods to predict solar eruptions,v) the coupling of MHD waves in 3D nonuniform media.These phenomena obey physical laws that can be expressed as a set of non-linear partial differential equations. However, what makes them distinct is that different phenomena require different dominant terms. Hence, the physical processes and the plasma response will be different in each case. For example, magnetic reconnection requires electrical resistance, but MHD waves in general do not. Gravity is important in flux emergence and prominence formation, but for magnetic reconnection it is not. Particle acceleration in solar flares may require a particle description, while many of the others research areas do not. It is the rich complexity of the non-linear equations that makes them hard to solve and to determine which key physical processes are responsible for each event. In order to solve these complex equations, we need a very important research tool, namely High Performance Computing. A research problem can be split up into smaller parts that are run on different processors at the same time (in parallel). Hence, with multiple processors a job that would require many years on a single processor, will be completed in a few weeks.We address key issues in the STFC Science Roadmap. However, a detailed understanding of the physics of our research topics are important not only for the Sun, solar-like stars and space weather, but also for understanding a range of diverse astrophysical processes such as star formation in giant molecular clouds, the evolution of astrophysical discs around stars, black holes and in Active Galactic Nuclei, and the physics of winds and outflows from stellar to extragalactic scales.
圣安德鲁斯大学的太阳和磁层理论小组(SMTG)将研究太阳大气层和地球磁层中发生的基本物理过程,以解决STFC路线图中的关键问题“太阳如何影响地球和太阳系其他部分的环境?“特别是,拟议的工作解决了一些问题,例如:i)当与太阳大气相互作用时,从太阳表面以下出现的磁场如何释放能量?为什么太阳的外层大气(日冕)比可见表面热100倍以上?iii)太阳表面的多尺度过程如何影响太阳全球磁场的演变以及何时变得不稳定?我们能否使用基于物理学的建模技术来预测太阳爆发及其对地球的影响?(五)是什么导致了地球磁层中观测到的波,以及如何使用模型来改善我们对磁层观测的解释?找到这些关键问题的答案需要一系列专业知识。SMTG非常适合回答这些问题,因为我们使用基础理论,分析模型,计算机模拟,正向建模和观测相结合的方法研究各种各样的物理现象。这种将详细的建模和与几个卫星任务的观测结果进行比较的混合物对于取得进展至关重要。我们将使用等离子体理论研究的主题是:i)磁通量出现、重联和粒子加速的复杂相互作用,ii)负责保持太阳大气比太阳表面热得多的物理机制(大气加热),iii)全球日冕磁场结构和稳定性的演变,iv)发展基于物理和数据驱动的方法来预测太阳爆发,v)三维非均匀介质中MHD波的耦合。这些现象遵循可以表示为一组非线性偏微分方程的物理定律。然而,使它们不同的是,不同的现象需要不同的主导术语。因此,在每种情况下,物理过程和等离子体响应将是不同的。例如,磁重联需要电阻,但MHD波一般不需要。重力在磁通浮现和日珥形成中很重要,但对于磁场重联则不然。太阳耀斑中的粒子加速可能需要粒子描述,而其他许多研究领域则不需要。非线性方程的复杂性使得它们很难求解,也很难确定每个事件的关键物理过程。为了解决这些复杂的方程,我们需要一个非常重要的研究工具,即高性能计算。一个研究问题可以被分割成更小的部分,同时在不同的处理器上运行(并行)。因此,使用多个处理器,在单个处理器上需要多年的工作将在几周内完成。然而,详细了解我们研究课题的物理学不仅对太阳、类太阳恒星和空间天气很重要,而且对了解一系列不同的天体物理过程也很重要,如巨型分子云中的星星形成,恒星周围天体物理盘的演变,黑洞和活动星系核,以及从恒星到河外尺度的风和外流的物理学。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Alfvén-Fast Wave Coupling in a 2D Nonuniform Medium
二维非均匀介质中的阿尔芬快波耦合
- DOI:10.1029/2023ea003167
- 发表时间:2023
- 期刊:
- 影响因子:3.1
- 作者:Davies R
- 通讯作者:Davies R
A Statistical Comparison of EUV Brightenings Observed by SO/EUI with Simulated Brightenings in Nonpotential Simulations
SO/EUI 观测到的 EUV 增亮与非电势模拟中的模拟增亮的统计比较
- DOI:10.3929/ethz-b-000580567
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Barczynski, Krzysztof
- 通讯作者:Barczynski, Krzysztof
Probing the Physics of the Solar Atmosphere with the Multi-slit Solar Explorer (MUSE). I. Coronal Heating
- DOI:10.3847/1538-4357/ac4222
- 发表时间:2021-06
- 期刊:
- 影响因子:0
- 作者:B. De Pontieu;P. Testa;J. Martínez-Sykora;P. Antolin;K. Karampelas;V. Hansteen;M. Rempel;M. Cheung;F. Reale;S. Danilovic;P. Pagano;V. Polito;I. De Moortel;D. Nóbrega-Siverio;T. Van Doorsselaere;A. Petralia;M. Asgari-Targhi;P. Boerner;M. Carlsson;G. Chintzoglou;A. Daw;E. DeLuca;L. Golub;Takuma Matsumoto;I. Ugarte-Urra;S. McIntosh
- 通讯作者:B. De Pontieu;P. Testa;J. Martínez-Sykora;P. Antolin;K. Karampelas;V. Hansteen;M. Rempel;M. Cheung;F. Reale;S. Danilovic;P. Pagano;V. Polito;I. De Moortel;D. Nóbrega-Siverio;T. Van Doorsselaere;A. Petralia;M. Asgari-Targhi;P. Boerner;M. Carlsson;G. Chintzoglou;A. Daw;E. DeLuca;L. Golub;Takuma Matsumoto;I. Ugarte-Urra;S. McIntosh
(When) Can Wave Heating Balance Optically Thin Radiative Losses in the Corona?
- DOI:10.3847/1538-4357/aca072
- 发表时间:2022-12
- 期刊:
- 影响因子:0
- 作者:I. De Moortel;T. Howson
- 通讯作者:I. De Moortel;T. Howson
A Statistical Comparison of EUV Brightenings Observed by SO/EUI with Simulated Brightenings in Nonpotential Simulations.
- DOI:10.1007/s11207-022-02074-6
- 发表时间:2022
- 期刊:
- 影响因子:2.8
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Thomas Neukirch其他文献
D. Biskamp, Nonlinear Magnetohydrodynamics
- DOI:
10.1023/a:1005050708698 - 发表时间:
1998-01-01 - 期刊:
- 影响因子:2.400
- 作者:
Thomas Neukirch - 通讯作者:
Thomas Neukirch
Magnetic Reconnection and Extraplanar Diffuse Ionized Gas
- DOI:
10.1023/b:astr.0000014965.09200.6d - 发表时间:
2004-02-01 - 期刊:
- 影响因子:1.500
- 作者:
Guido T. Birk;Harald Lesch;Thomas Neukirch - 通讯作者:
Thomas Neukirch
Helmet Streamers with Triple Structures: Simulations of resistive dynamics
- DOI:
10.1023/a:1005226213819 - 发表时间:
2000-01-01 - 期刊:
- 影响因子:2.400
- 作者:
Thomas Wiegelmann;Karl Schindler;Thomas Neukirch - 通讯作者:
Thomas Neukirch
Helmet Streamers with Triple Structures: Weakly Two-Dimensional Stationary States
- DOI:
10.1023/a:1005016111097 - 发表时间:
1998-01-01 - 期刊:
- 影响因子:2.400
- 作者:
Thomas Wiegelmann;Karl Schindler;Thomas Neukirch - 通讯作者:
Thomas Neukirch
An Efficient Method for Magnetic Field Extrapolation Based on a Family of Analytical Three-Dimensional Magnetohydrostatic Equilibria
- DOI:
10.1007/s11207-025-02469-1 - 发表时间:
2025-05-14 - 期刊:
- 影响因子:2.400
- 作者:
Lilli Nadol;Thomas Neukirch - 通讯作者:
Thomas Neukirch
Thomas Neukirch的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Thomas Neukirch', 18)}}的其他基金
Solar and Magnetospheric Plasma Theory
太阳和磁层等离子体理论
- 批准号:
PP/E001122/1 - 财政年份:2007
- 资助金额:
$ 113.31万 - 项目类别:
Research Grant
相似海外基金
Explosive energy release in space plasmas: unravelling the magnetospheric dynamics of substorms
空间等离子体中的爆炸性能量释放:揭示亚暴的磁层动力学
- 批准号:
2573668 - 财政年份:2021
- 资助金额:
$ 113.31万 - 项目类别:
Studentship
Solar and Magnetospheric Magnetohydrodynamics and Plasmas: Theory and Application
太阳和磁层磁流体动力学和等离子体:理论与应用
- 批准号:
ST/S000402/1 - 财政年份:2019
- 资助金额:
$ 113.31万 - 项目类别:
Research Grant
Physical Mechanism of Self-Organization in Magnetospheric Plasmas: Focusing on Heat and Particle Transport
磁层等离子体自组织物理机制:聚焦热和粒子输运
- 批准号:
18K13525 - 财政年份:2018
- 资助金额:
$ 113.31万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Solar and Magnetospheric Magnetohydrodynamics and Plasmas: Theory and Application
太阳和磁层磁流体动力学和等离子体:理论与应用
- 批准号:
ST/N000609/1 - 财政年份:2016
- 资助金额:
$ 113.31万 - 项目类别:
Research Grant
Kinetic Structure, Stability, and Dynamics of Current Sheets in Magnetospheric Plasmas
磁层等离子体电流片的动力学结构、稳定性和动力学
- 批准号:
1102527 - 财政年份:2011
- 资助金额:
$ 113.31万 - 项目类别:
Continuing Grant
Kinetic Theories of Ultra-Low Frequency and Current-Sheet Instabilities in Magnetospheric Plasmas
磁层等离子体超低频和电流层不稳定性的动力学理论
- 批准号:
0852952 - 财政年份:2009
- 资助金额:
$ 113.31万 - 项目类别:
Continuing Grant
A theoretical study of magnetohydrodynamic instabilities in non-rotating and rotating magnetospheric plasmas
非旋转和旋转磁层等离子体中磁流体动力学不稳定性的理论研究
- 批准号:
20540436 - 财政年份:2008
- 资助金额:
$ 113.31万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Waves and Instabilities in Magnetospheric Rotating Plasmas
磁层旋转等离子体中的波和不稳定性
- 批准号:
19340170 - 财政年份:2007
- 资助金额:
$ 113.31万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
CAREER: Kinetic Theory and Simulation of Magnetospheric Plasmas
职业:磁层等离子体的动力学理论和模拟
- 批准号:
0447423 - 财政年份:2005
- 资助金额:
$ 113.31万 - 项目类别:
Continuing Grant
Kinetic Theory and Simulation of Ultra-Low-Frequency Waves in Magnetospheric Plasmas
磁层等离子体中超低频波的动力学理论与模拟
- 批准号:
0335279 - 财政年份:2004
- 资助金额:
$ 113.31万 - 项目类别:
Continuing Grant