Solar and Magnetospheric Magnetohydrodynamics and Plasmas: Theory and Application
太阳和磁层磁流体动力学和等离子体:理论与应用
基本信息
- 批准号:ST/S000402/1
- 负责人:
- 金额:$ 105.49万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2019
- 资助国家:英国
- 起止时间:2019 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The Solar and Magnetospheric Theory Group (SMTG) of the University of St Andrews will work on the fundamental physical processes occurring in the Sun's atmosphere and the terrestrial magnetosphere to address the key STFC Roadmap question "How does the Sun influence the environment of the Earth and the rest of the Solar System?" In particular, the proposed work addresses questions, such as:i) How do sunspots and active regions (regions of strong magnetic fields) form, evolve and decay? ii) Why is the Sun's outer atmosphere (the corona) over 100 times hotter than its visible surface? iii) What causes the observed waves in the Sun's atmosphere and the Earth's magnetosphere? iv) How does the Sun's magnetic field evolve over many years and how does it interact with the Earth? v) How does a 3D magnetic field change its connectivity/configuration and what properties would we observe? vi) How are charged particles accelerated during reconnection? Finding answers to these key questions calls for a range of expertise. The SMTG is excellently positioned to answer these questions, since we study a wide variety of physical phenomena using a combination of fundamental theory, analytical models, computer simulations, forward modelling and observations. This mixture of detailed modelling and comparison with observations from several satellite missions is essential to make progress. The topics we will investigate, using plasma theory, are: i) the formation and evolution of Sunspots and Active Regions, ii) the physical mechanisms responsible for keeping the solar atmosphere much hotter than the solar surface (atmospheric heating), iii) the energy budget of magnetohydrodynamics (MHD) waves, iv) observational signatures due to magnetic field reconnection and energy release and the acceleration of particles to high energies, v) the evolution and topology of the global coronal magnetic field, vi) the coupling of MHD waves in 3D nonuniform media. These phenomena obey physical laws that can be expressed as a set of non-linear partial differential equations. However, what makes them distinct is that different phenomena require different dominant terms. Hence, the physical processes and the plasma response will be different in each case. For example, magnetic reconnection requires electrical resistance, but MHD waves in general do not. Gravity is important in flux emergence and prominence formation, but for magnetic reconnection it is not. Particle acceleration in solar flares and the magnetosphere may require a kinetic (particle) description, while many of the others research areas do not. It is the rich complexity of the non-linear equations that makes them hard to solve and to determine which key physical processes are responsible for each event. In order to solve these complex equations, we need a very important research tool, namely High Performance Computing. A research problem can be split up into smaller parts that are run on different processors at the same time (in parallel). Hence, with 256 processors a job that would require 10 years on single processor, will be completed in a few weeks.We address key issues in the STFC Science Roadmap. However, a detailed understanding of the physics of our research topics are important not only for the Sun, solar-like stars and space weather, but also for understanding a range of diverse astrophysical processes such as star formation in giant molecular clouds, the evolution of astrophysical discs around stars, black holes and in Active Galactic Nuclei, and the physics of winds and outflows from stellar to extragalactic scales.
圣安德鲁斯大学的太阳和磁层理论小组(SMTG)将研究太阳大气层和地球磁层中发生的基本物理过程,以解决STFC路线图中的关键问题“太阳如何影响地球和太阳系其他部分的环境?“特别是,拟议的工作解决的问题,如:i)太阳黑子和活动区(强磁场区)如何形成,演变和衰变?为什么太阳的外层大气(日冕)比可见表面热100倍以上?iii)是什么导致了太阳大气层和地球磁层中观测到的波?(4)太阳的磁场是如何多年演变的,它是如何与地球相互作用的?v)3D磁场如何改变其连通性/配置以及我们将观察到什么性质?(六)带电粒子在重联过程中是如何加速的?找到这些关键问题的答案需要一系列专业知识。SMTG非常适合回答这些问题,因为我们使用基础理论,分析模型,计算机模拟,正向建模和观测相结合的方法研究各种各样的物理现象。这种将详细的建模和与几个卫星任务的观测结果进行比较的混合物对于取得进展至关重要。我们将使用等离子体理论研究的主题是:i)太阳黑子和活动区的形成和演化,ii)负责保持太阳大气比太阳表面热得多的物理机制(大气加热),iii)磁流体动力学(MHD)波的能量收支,㈣由于磁场重联和能量释放以及粒子加速到高能量而产生的观测特征,(5)全球日冕磁场的演化和拓扑结构;(6)三维非均匀介质中MHD波的耦合。这些现象遵循物理定律,可以表示为一组非线性偏微分方程。然而,使它们不同的是,不同的现象需要不同的主导术语。因此,在每种情况下,物理过程和等离子体响应将是不同的。例如,磁重联需要电阻,但MHD波一般不需要。重力在通量出现和日珥形成中很重要,但对于磁重联来说却不然。太阳耀斑和磁层中的粒子加速可能需要动力学(粒子)描述,而其他许多研究领域则不需要。非线性方程的复杂性使得它们很难求解,也很难确定每个事件的关键物理过程。为了解决这些复杂的方程,我们需要一个非常重要的研究工具,即高性能计算。一个研究问题可以被分割成更小的部分,同时在不同的处理器上运行(并行)。因此,256个处理器的工作,将需要10年的单处理器,将在几个星期内完成。然而,详细了解我们研究课题的物理学不仅对太阳、类太阳恒星和空间天气很重要,而且对了解一系列不同的天体物理过程也很重要,如巨型分子云中的星星形成,恒星周围天体物理盘的演变,黑洞和活动星系核,以及从恒星到河外尺度的风和外流的物理学。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Probing the Physics of the Solar Atmosphere with the Multi-slit Solar Explorer (MUSE). I. Coronal Heating
- DOI:10.3847/1538-4357/ac4222
- 发表时间:2021-06
- 期刊:
- 影响因子:0
- 作者:B. De Pontieu;P. Testa;J. Martínez-Sykora;P. Antolin;K. Karampelas;V. Hansteen;M. Rempel;M. Cheung;F. Reale;S. Danilovic;P. Pagano;V. Polito;I. De Moortel;D. Nóbrega-Siverio;T. Van Doorsselaere;A. Petralia;M. Asgari-Targhi;P. Boerner;M. Carlsson;G. Chintzoglou;A. Daw;E. DeLuca;L. Golub;Takuma Matsumoto;I. Ugarte-Urra;S. McIntosh
- 通讯作者:B. De Pontieu;P. Testa;J. Martínez-Sykora;P. Antolin;K. Karampelas;V. Hansteen;M. Rempel;M. Cheung;F. Reale;S. Danilovic;P. Pagano;V. Polito;I. De Moortel;D. Nóbrega-Siverio;T. Van Doorsselaere;A. Petralia;M. Asgari-Targhi;P. Boerner;M. Carlsson;G. Chintzoglou;A. Daw;E. DeLuca;L. Golub;Takuma Matsumoto;I. Ugarte-Urra;S. McIntosh
(When) Can Wave Heating Balance Optically Thin Radiative Losses in the Corona?
- DOI:10.3847/1538-4357/aca072
- 发表时间:2022-12
- 期刊:
- 影响因子:0
- 作者:I. De Moortel;T. Howson
- 通讯作者:I. De Moortel;T. Howson
How a Realistic Magnetosphere Alters the Polarizations of Surface, Fast Magnetosonic, and Alfvén Waves.
- DOI:10.1029/2021ja030032
- 发表时间:2022-03
- 期刊:
- 影响因子:2.8
- 作者:Archer, M. O.;Southwood, D. J.;Hartinger, M. D.;Rastaetter, L.;Wright, A. N.
- 通讯作者:Wright, A. N.
MHD Waves in open coronal structures
开放冠状结构中的 MHD 波
- DOI:10.48550/arxiv.2012.08802
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Banerjee D
- 通讯作者:Banerjee D
Weak Turbulence and Quasilinear Diffusion for Relativistic Wave-Particle Interactions Via a Markov Approach
- DOI:10.3389/fspas.2021.805699
- 发表时间:2022-01-14
- 期刊:
- 影响因子:3
- 作者:Allanson, Oliver;Elsden, Thomas;Neukirch, Thomas
- 通讯作者:Neukirch, Thomas
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alan Hood其他文献
Phase mixing of nonlinear Alfvén waves
非线性阿尔文波的相位混合
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:6.5
- 作者:
A. Prokopyszyn;Alan Hood;I. Moortel - 通讯作者:
I. Moortel
Alan Hood的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alan Hood', 18)}}的其他基金
Solar and Magnetospheric Magnetohydrodynamics and Plasmas: Theory and Application
太阳和磁层磁流体动力学和等离子体:理论与应用
- 批准号:
ST/N000609/1 - 财政年份:2016
- 资助金额:
$ 105.49万 - 项目类别:
Research Grant
Solar and Magnetospheric Plasma Theory
太阳和磁层等离子体理论
- 批准号:
ST/K000950/1 - 财政年份:2013
- 资助金额:
$ 105.49万 - 项目类别:
Research Grant
Solar and Magnetospheric Plasma Theory
太阳和磁层等离子体理论
- 批准号:
ST/H001964/1 - 财政年份:2010
- 资助金额:
$ 105.49万 - 项目类别:
Research Grant
Parallel Computing Resources for the UK MHD Community
英国 MHD 社区的并行计算资源
- 批准号:
ST/H008799/1 - 财政年份:2009
- 资助金额:
$ 105.49万 - 项目类别:
Research Grant
相似海外基金
OPP-PRF: Conjugate Experiment to Explore Magnetospheric Phenomena Via Spatial Sonification and Mixed Reality
OPP-PRF:通过空间超声和混合现实探索磁层现象的共轭实验
- 批准号:
2218996 - 财政年份:2023
- 资助金额:
$ 105.49万 - 项目类别:
Continuing Grant
Solar and Magnetospheric Plasmas: Theory and Application
太阳和磁层等离子体:理论与应用
- 批准号:
ST/W001195/1 - 财政年份:2022
- 资助金额:
$ 105.49万 - 项目类别:
Research Grant
Explosive energy release in space plasmas: unravelling the magnetospheric dynamics of substorms
空间等离子体中的爆炸性能量释放:揭示亚暴的磁层动力学
- 批准号:
2573668 - 财政年份:2021
- 资助金额:
$ 105.49万 - 项目类别:
Studentship
The transfer of solar wind energy into the upper atmosphere through magnetospheric waves
通过磁层波将太阳风能转移到高层大气
- 批准号:
2603418 - 财政年份:2021
- 资助金额:
$ 105.49万 - 项目类别:
Studentship
Effects of Temporal Variability on Wave-Particle Interactions in Magnetospheric Plasma
磁层等离子体中波粒相互作用的时间变化的影响
- 批准号:
ST/W000369/1 - 财政年份:2021
- 资助金额:
$ 105.49万 - 项目类别:
Research Grant
Analysis and Prediction of Magnetospheric Plasma Energy Dynamics with the Wind Driven Magnetospheric-Ionospheric (WINDMI) Model
利用风驱动磁层-电离层 (WINDMI) 模型分析和预测磁层等离子体能量动力学
- 批准号:
2134451 - 财政年份:2021
- 资助金额:
$ 105.49万 - 项目类别:
Standard Grant
Studies of energization of magnetospheric particles by substorm dipolarizations
亚暴偶极化对磁层粒子供能的研究
- 批准号:
RGPIN-2018-03988 - 财政年份:2021
- 资助金额:
$ 105.49万 - 项目类别:
Discovery Grants Program - Individual
Space Plasma and Magnetospheric Physics at Southampton (2021-4)
南安普顿的空间等离子体和磁层物理(2021-4)
- 批准号:
ST/V000942/1 - 财政年份:2021
- 资助金额:
$ 105.49万 - 项目类别:
Research Grant
Studies of energization of magnetospheric particles by substorm dipolarizations
亚暴偶极化对磁层粒子供能的研究
- 批准号:
RGPIN-2018-03988 - 财政年份:2020
- 资助金额:
$ 105.49万 - 项目类别:
Discovery Grants Program - Individual
Magnetospheric Ducts and Their Role and Importance in Whistler Mode Wave Propagation and Wave-particle Interactions in the Inner Magnetosphere
磁层管道及其在内磁层中惠斯勒模式波传播和波粒相互作用中的作用和重要性
- 批准号:
2015765 - 财政年份:2020
- 资助金额:
$ 105.49万 - 项目类别:
Standard Grant