Solar and Magnetospheric Magnetohydrodynamics and Plasmas: Theory and Application

太阳和磁层磁流体动力学和等离子体:理论与应用

基本信息

  • 批准号:
    ST/N000609/1
  • 负责人:
  • 金额:
    $ 134.9万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2016
  • 资助国家:
    英国
  • 起止时间:
    2016 至 无数据
  • 项目状态:
    已结题

项目摘要

The Solar and Magnetospheric Theory Group (SMTG) of the University of St Andrews will work on the fundamental physical processes occurring in the Sun's atmosphere and planetary magnetospheres that help to address the key STFC Roadmap question "How does the Sun influence the environment of the Earth and the rest of the Solar System?" For example, the proposed work addresses questions, such as:i) How do sunspots and active regions (regions of strong magnetic fields) form, evolve and decay? ii) Why is the Sun's outer atmosphere (the corona) over 100 times hotter than its visible surface? iii) What causes the observed waves in the Sun's atmosphere and the Earth's magnetosphere? iv) How does the Sun's magnetic field evolve over many years and how does it interact with the Earth? v) How does a 3D magnetic field change its configuration? vi) How are charged particles accelerated during solar flares and eruptions? Finding answers to these key questions calls for a range of expertise. The SMTG is excellently positioned to answer these questions, since we study a wide variety of physical phenomena using mathematical modelling (a combination of fundamental theory, analytical models, computer simulations, forward modelling and observations). This is exactly what is needed, i.e. a mixture of detailed modelling methods and a comparison between observations from several satellite missions and the theoretical models. The topics we will investigate, using plasma theory, are: i) the emergence of magnetic fields from the solar interior and their subsequent evolution, the formation of cool dense prominences and the evolution of the global magnetic field of the Sun, ii) the propagation and dissipation of magnetohydrodynamics (MHD) waves, iii) the physical 3D mechanisms by which magnetic fields change their connectivity, releasing excess energy and how particles are accelerated to high energies, iv) the physical mechanisms responsible for keeping the solar atmosphere much hotter than the solar surface (atmospheric heating), v) the evolution and topology of the global coronal magnetic field, vi) the coupling of the 3 distinct magnetospheric MHD waves and the physics of the coupling of planetary magnetospheres to their ionospheres. These phenomena obey physical laws that can be expressed as non-linear partial differential equations. However, what makes them distinct is that different phenomena require different dominant terms. Hence, the physical processes and the plasma response will be different in each case. For example, magnetic reconnection requires electrical resistance, but MHD waves in general do not. Gravity is important in flux emergence and prominence formation, but for magnetic reconnection it is not. Particle acceleration in solar flares and the magnetosphere requires a kinetic (particle) description, while many of the other research areas do not. It is the rich complexity of the non-linear equations that makes them hard to solve and to determine which key physical processes are responsible for each event.A very important research tool is High Performance Computing. A research problem can be split up into smaller parts that are run on different processors at the same time (in parallel). Hence, with 256 processors a job that would require 10 years on single processor, will be completed in a few weeks.We address key issues in the STFC Science Roadmap. However, a detailed understanding of the physics of our research topics is important not only for the Sun, solar-like stars and space weather, but also for understanding such diverse astrophysical processes such as star formation in giant molecular clouds, the evolution of astrophysical discs around stars, black holes and in Active Galactic Nuclei, and the physics of winds and outflows from stellar to extragalactic scales.
圣安德鲁斯大学的太阳和磁层理论小组(SMTG)将研究太阳大气层和行星磁层中发生的基本物理过程,这些过程有助于解决STFC路线图中的关键问题“太阳如何影响地球和太阳系其他部分的环境?”“例如,拟议的工作解决的问题,如:i)太阳黑子和活动区(强磁场区)如何形成,演变和衰变?为什么太阳的外层大气(日冕)比可见表面热100倍以上?iii)是什么导致了太阳大气层和地球磁层中观测到的波?(4)太阳的磁场是如何多年演变的,它是如何与地球相互作用的?v)3D磁场如何改变其结构?vi)在太阳耀斑和爆发期间,带电粒子是如何加速的?找到这些关键问题的答案需要一系列专业知识。SMTG非常适合回答这些问题,因为我们使用数学建模(基础理论,分析模型,计算机模拟,正向建模和观测的组合)研究各种各样的物理现象。这正是所需要的,即混合使用详细的建模方法,并将几个卫星飞行任务的观测结果与理论模型进行比较。我们将使用等离子体理论研究的主题是:i)太阳内部磁场的出现及其随后的演变,冷致密磁流的形成和太阳全球磁场的演变,ii)磁流体动力学(MHD)波的传播和耗散,iii)磁场改变其连通性的物理3D机制,释放多余的能量以及粒子如何被加速到高能量,iv)负责保持太阳大气层比太阳表面热得多的物理机制(大气加热),v)全球日冕磁场的演变和拓扑结构,vi)3种不同磁层MHD波的耦合和行星磁层与其电离层耦合的物理学。这些现象遵循可以表示为非线性偏微分方程的物理定律。然而,使它们不同的是,不同的现象需要不同的主导术语。因此,在每种情况下,物理过程和等离子体响应将是不同的。例如,磁重联需要电阻,但MHD波一般不需要。重力在通量出现和日珥形成中很重要,但对于磁重联来说却不然。太阳耀斑和磁层中的粒子加速需要动力学(粒子)描述,而许多其他研究领域则不需要。非线性方程组的复杂性使得它们很难求解,也很难确定每个事件的关键物理过程。高性能计算是一个非常重要的研究工具。一个研究问题可以被分割成更小的部分,同时在不同的处理器上运行(并行)。因此,256个处理器的工作,将需要10年的单处理器,将在几个星期内完成。然而,详细了解我们研究课题的物理学不仅对太阳、类太阳恒星和空间天气很重要,而且对了解诸如巨型分子云中星星的形成、恒星周围、黑洞和活动星系核中天体物理盘的演变以及从恒星到河外尺度的风和外流的物理学等各种天体物理过程也很重要。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
On the inverse problem for Channell collisionless plasma equilibria
Channell无碰撞等离子体平衡的反问题
In Situ Generation of Transverse Magnetohydrodynamic Waves from Colliding Flows in the Solar Corona
  • DOI:
    10.3847/2041-8213/aacf98
  • 发表时间:
    2018-07
  • 期刊:
  • 影响因子:
    0
  • 作者:
    P. Antolin;P. Pagano;I. De Moortel;V. Nakariakov
  • 通讯作者:
    P. Antolin;P. Pagano;I. De Moortel;V. Nakariakov
The inverse problem for collisionless plasma equilibria
无碰撞等离子体平衡的反演问题
  • DOI:
    10.48550/arxiv.1710.04912
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Allanson O
  • 通讯作者:
    Allanson O
Observational Signatures of Transverse Magnetohydrodynamic Waves and Associated Dynamic Instabilities in Coronal Flux Tubes
  • DOI:
    10.3847/1538-4357/aa5eb2
  • 发表时间:
    2017-02-20
  • 期刊:
  • 影响因子:
    4.9
  • 作者:
    Antolin, P.;De Moortel, I.;Yokoyama, T.
  • 通讯作者:
    Yokoyama, T.
MODELING OBSERVED DECAY-LESS OSCILLATIONS AS RESONANTLY ENHANCED KELVIN-HELMHOLTZ VORTICES FROM TRANSVERSE MHD WAVES AND THEIR SEISMOLOGICAL APPLICATION
  • DOI:
    10.3847/2041-8205/830/2/l22
  • 发表时间:
    2016-10-20
  • 期刊:
  • 影响因子:
    7.9
  • 作者:
    Antolin, P.;De Moortel, I.;Yokoyama, T.
  • 通讯作者:
    Yokoyama, T.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alan Hood其他文献

Phase mixing of nonlinear Alfvén waves
非线性阿尔文波的相位混合
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    6.5
  • 作者:
    A. Prokopyszyn;Alan Hood;I. Moortel
  • 通讯作者:
    I. Moortel

Alan Hood的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alan Hood', 18)}}的其他基金

Solar and Magnetospheric Magnetohydrodynamics and Plasmas: Theory and Application
太阳和磁层磁流体动力学和等离子体:理论与应用
  • 批准号:
    ST/S000402/1
  • 财政年份:
    2019
  • 资助金额:
    $ 134.9万
  • 项目类别:
    Research Grant
Solar and Magnetospheric Plasma Theory
太阳和磁层等离子体理论
  • 批准号:
    ST/K000950/1
  • 财政年份:
    2013
  • 资助金额:
    $ 134.9万
  • 项目类别:
    Research Grant
Local Coronal Dynamics
当地日冕动力学
  • 批准号:
    ST/L005522/1
  • 财政年份:
    2013
  • 资助金额:
    $ 134.9万
  • 项目类别:
    Research Grant
Solar and Magnetospheric Plasma Theory
太阳和磁层等离子体理论
  • 批准号:
    ST/H001964/1
  • 财政年份:
    2010
  • 资助金额:
    $ 134.9万
  • 项目类别:
    Research Grant
Parallel Computing Resources for the UK MHD Community
英国 MHD 社区的并行计算资源
  • 批准号:
    ST/H008799/1
  • 财政年份:
    2009
  • 资助金额:
    $ 134.9万
  • 项目类别:
    Research Grant
UKMHD Consortium Support
UKMHD 联盟支持
  • 批准号:
    PP/E001165/1
  • 财政年份:
    2007
  • 资助金额:
    $ 134.9万
  • 项目类别:
    Research Grant

相似海外基金

OPP-PRF: Conjugate Experiment to Explore Magnetospheric Phenomena Via Spatial Sonification and Mixed Reality
OPP-PRF:通过空间超声和混合现实探索磁层现象的共轭实验
  • 批准号:
    2218996
  • 财政年份:
    2023
  • 资助金额:
    $ 134.9万
  • 项目类别:
    Continuing Grant
Solar and Magnetospheric Plasmas: Theory and Application
太阳和磁层等离子体:理论与应用
  • 批准号:
    ST/W001195/1
  • 财政年份:
    2022
  • 资助金额:
    $ 134.9万
  • 项目类别:
    Research Grant
Explosive energy release in space plasmas: unravelling the magnetospheric dynamics of substorms
空间等离子体中的爆炸性能量释放:揭示亚暴的磁层动力学
  • 批准号:
    2573668
  • 财政年份:
    2021
  • 资助金额:
    $ 134.9万
  • 项目类别:
    Studentship
The transfer of solar wind energy into the upper atmosphere through magnetospheric waves
通过磁层波将太阳风能转移到高层大气
  • 批准号:
    2603418
  • 财政年份:
    2021
  • 资助金额:
    $ 134.9万
  • 项目类别:
    Studentship
Effects of Temporal Variability on Wave-Particle Interactions in Magnetospheric Plasma
磁层等离子体中波粒相互作用的时间变化的影响
  • 批准号:
    ST/W000369/1
  • 财政年份:
    2021
  • 资助金额:
    $ 134.9万
  • 项目类别:
    Research Grant
Analysis and Prediction of Magnetospheric Plasma Energy Dynamics with the Wind Driven Magnetospheric-Ionospheric (WINDMI) Model
利用风驱动磁层-电离层 (WINDMI) 模型分析和预测磁层等离子体能量动力学
  • 批准号:
    2134451
  • 财政年份:
    2021
  • 资助金额:
    $ 134.9万
  • 项目类别:
    Standard Grant
Studies of energization of magnetospheric particles by substorm dipolarizations
亚暴偶极化对磁层粒子供能的研究
  • 批准号:
    RGPIN-2018-03988
  • 财政年份:
    2021
  • 资助金额:
    $ 134.9万
  • 项目类别:
    Discovery Grants Program - Individual
Space Plasma and Magnetospheric Physics at Southampton (2021-4)
南安普顿的空间等离子体和磁层物理(2021-4)
  • 批准号:
    ST/V000942/1
  • 财政年份:
    2021
  • 资助金额:
    $ 134.9万
  • 项目类别:
    Research Grant
Studies of energization of magnetospheric particles by substorm dipolarizations
亚暴偶极化对磁层粒子供能的研究
  • 批准号:
    RGPIN-2018-03988
  • 财政年份:
    2020
  • 资助金额:
    $ 134.9万
  • 项目类别:
    Discovery Grants Program - Individual
Magnetospheric Ducts and Their Role and Importance in Whistler Mode Wave Propagation and Wave-particle Interactions in the Inner Magnetosphere
磁层管道及其在内磁层中惠斯勒模式波传播和波粒相互作用中的作用和重要性
  • 批准号:
    2015765
  • 财政年份:
    2020
  • 资助金额:
    $ 134.9万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了