Development of Levitated Quantum Optomechanical Sensors for Dark Matter Detection

用于暗物质探测的悬浮量子光机械传感器的开发

基本信息

  • 批准号:
    ST/W006170/1
  • 负责人:
  • 金额:
    $ 51.57万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2022
  • 资助国家:
    英国
  • 起止时间:
    2022 至 无数据
  • 项目状态:
    未结题

项目摘要

There is overwhelming evidence that 85\% of the mass of the universe is made of dark matter. Its effects can be observed on astrophysical and cosmological scales, but yet we do not know what it is. Direct detection is one of the highest priorities in science and its discovery will be of enormous scientific importance, providing perhaps the most important missing piece in our understanding of the universe and of fundamental physics. Astrophysical and cosmological bounds placed on the origin of dark matter can be explained by a very large number of potential candidates that span over 30 orders of magnitude in mass. This complicates experimental efforts to design a specific detector since we do not know which of the many possible interactions to use in its design. As there is no fixed mass or cross section to target in this search, there is now a huge international effort to expand the search and to develop new sensor technologies that can ideally cover large mass ranges with increased sensitivity. An important new direction in this international effort is the use of quantum sensors whose sensitivity is only limited by the laws of quantum mechanics. These are very different technologies to what has been previously used for dark matter searches and they promise to revolutionise discovery. In the research programme, we will utilize one of the newest quantum sensors. These consist of small masses isolated from the environment by levitating them with optical and electric fields in vacuum. These are ultra-cold quantum oscillators, which can be cooled to their ground state, making them exquisitely sensitive to small forces. This importantly includes those due to interactions with dark matter. Remarkably, their mass and thus their coupling to dark matter, can be tuned over nine orders of magnitude, while their frequency of oscillation can be tuned over at least five orders of magnitude.We will develop these sensors as dark matter detectors for at least two types of dark matter in which they appear to be very well suited. This includes extending an initial search for composite dark matter particles by expanding on the mass range by six orders of magnitude and on sensitivity by at least an order of magnitude. We also aim to use these systems to begin the first search for ultralight dark matter using arrays of these sensors and establishing the first limits based on this technology. Lastly, we expect that this work will not only have impact in dark matter physics, but also in other areas of fundamental physics where measurement of weak forces are required.
有压倒性的证据表明,宇宙质量的85%是由暗物质组成的。它的影响可以在天体物理学和宇宙学尺度上观察到,但我们还不知道它是什么。直接探测是科学的最高优先事项之一,它的发现将具有巨大的科学重要性,可能是我们理解宇宙和基础物理学中最重要的缺失部分。天体物理学和宇宙学对暗物质起源的限制可以用大量的潜在候选者来解释,这些候选者的质量超过30个数量级。这使得设计特定检测器的实验工作变得复杂,因为我们不知道在其设计中使用许多可能的相互作用中的哪一个。由于在这一搜索中没有固定的目标质量或横截面,现在国际社会正在努力扩大搜索范围,并开发新的传感器技术,以提高灵敏度,理想地覆盖大质量范围。这一国际努力的一个重要新方向是使用量子传感器,其灵敏度仅受量子力学定律的限制。这些技术与以前用于暗物质搜索的技术非常不同,它们有望彻底改变发现。在研究计划中,我们将使用最新的量子传感器之一。这些由通过在真空中用光和电场悬浮而与环境隔离的小质量组成。这些是超冷量子振荡器,可以冷却到基态,使它们对微小的力非常敏感。这主要包括那些由于与暗物质相互作用而产生的。值得注意的是,它们的质量以及它们与暗物质的耦合可以调节超过9个数量级,而它们的振荡频率可以调节至少5个数量级。我们将开发这些传感器作为至少两种暗物质的探测器,它们似乎非常适合。这包括通过将质量范围扩大六个数量级和将灵敏度扩大至少一个数量级来扩大对复合暗物质粒子的初步搜索。我们还打算利用这些系统开始使用这些传感器阵列对超轻暗物质进行首次搜索,并建立基于这项技术的第一个极限。最后,我们希望这项工作不仅会对暗物质物理学产生影响,而且会对需要测量弱力的基础物理学的其他领域产生影响。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Sensing directional noise baths in levitated optomechanics
悬浮光力学中的定向噪声浴传感
  • DOI:
    10.1103/physrevresearch.6.013129
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    4.2
  • 作者:
    Gosling J
  • 通讯作者:
    Gosling J
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Peter Barker其他文献

Different Cytokine Patterns in emBMPR2/em-Mutation-Positive Patients and Patients With Pulmonary Arterial Hypertension Without Mutations and Their Influence on Survival
  • DOI:
    10.1016/j.chest.2022.01.019
  • 发表时间:
    2022-06-01
  • 期刊:
  • 影响因子:
    8.600
  • 作者:
    Max Schwiening;Emilia M. Swietlik;Divya Pandya;Keith Burling;Peter Barker;Oliver Y. Feng;Carmen M. Treacy;Susana Abreu;S. John Wort;Joanna Pepke-Zaba;Stefan Graf;Stefan J. Marciniak;Nicholas W. Morrell;Elaine Soon
  • 通讯作者:
    Elaine Soon
The age of the Weddell Basin
韦德尔盆地的年龄
  • DOI:
    10.1038/290489a0
  • 发表时间:
    1981-04-09
  • 期刊:
  • 影响因子:
    48.500
  • 作者:
    John L. LaBrecque;Peter Barker
  • 通讯作者:
    Peter Barker
“The Pain of a Dying Species” or the “New Waters” of a Bicultural Literature: Sorbian Literature since 1990
  • DOI:
    10.1007/s11059-006-0027-1
  • 发表时间:
    2006-12-01
  • 期刊:
  • 影响因子:
    0.200
  • 作者:
    Peter Barker
  • 通讯作者:
    Peter Barker
Copernicus, the orbs, and the equant
  • DOI:
    10.1007/bf00413764
  • 发表时间:
    1990-05-01
  • 期刊:
  • 影响因子:
    1.300
  • 作者:
    Peter Barker
  • 通讯作者:
    Peter Barker
What future for Antarctic geology?
南极地质学的未来是什么?
  • DOI:
    10.1038/269561b0
  • 发表时间:
    1977-10-01
  • 期刊:
  • 影响因子:
    48.500
  • 作者:
    Peter Barker
  • 通讯作者:
    Peter Barker

Peter Barker的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Peter Barker', 18)}}的其他基金

Fundamental science and technology with levitated cavity optomechanics
悬浮腔光力学基础科学技术
  • 批准号:
    EP/W029626/1
  • 财政年份:
    2022
  • 资助金额:
    $ 51.57万
  • 项目类别:
    Research Grant
Laser refrigeration on the nanoscale: From nanocryostats to quantum optomechanics
纳米级激光制冷:从纳米低温恒温器到量子光力学
  • 批准号:
    EP/S000267/1
  • 财政年份:
    2018
  • 资助金额:
    $ 51.57万
  • 项目类别:
    Research Grant
High-Power Unique-Stability Laser Source For Quantum Applications
适用于量子应用的高功率、独特稳定性激光源
  • 批准号:
    EP/R001596/1
  • 财政年份:
    2017
  • 资助金额:
    $ 51.57万
  • 项目类别:
    Research Grant
Quantum Cavity Optomechanics of Levitated Nanoparticles: from Foundations to Technologies
悬浮纳米粒子的量子腔光力学:从基础到技术
  • 批准号:
    EP/N031105/1
  • 财政年份:
    2016
  • 资助金额:
    $ 51.57万
  • 项目类别:
    Research Grant
Cavity optomechanics: towards sensing at the quantum limit
腔光力学:走向量子极限传感
  • 批准号:
    EP/H050434/1
  • 财政年份:
    2010
  • 资助金额:
    $ 51.57万
  • 项目类别:
    Research Grant
Creating ultra-cold molecules by sympathetic cooling
通过交感冷却产生超冷分子
  • 批准号:
    EP/F014937/1
  • 财政年份:
    2008
  • 资助金额:
    $ 51.57万
  • 项目类别:
    Research Grant
Manipulating molecules with optical fields
用光场操纵分子
  • 批准号:
    EP/C012445/2
  • 财政年份:
    2006
  • 资助金额:
    $ 51.57万
  • 项目类别:
    Fellowship
Trapping and slowing cold molecules in pulsed optical lattices
在脉冲光学晶格中捕获和减缓冷分子
  • 批准号:
    GR/S77042/02
  • 财政年份:
    2006
  • 资助金额:
    $ 51.57万
  • 项目类别:
    Research Grant
The Unification of Physics and Astronomy
物理学与天文学的统一
  • 批准号:
    9111532
  • 财政年份:
    1992
  • 资助金额:
    $ 51.57万
  • 项目类别:
    Standard Grant

相似海外基金

If a spin could torque: quantum force sensing with levitated nanodiamonds
如果自旋可以产生扭矩:利用悬浮纳米金刚石进行量子力传感
  • 批准号:
    DP240100942
  • 财政年份:
    2024
  • 资助金额:
    $ 51.57万
  • 项目类别:
    Discovery Projects
PhD Studentship in Experimental Levitated Quantum Optomechanics
实验悬浮量子光力学博士生
  • 批准号:
    2869813
  • 财政年份:
    2023
  • 资助金额:
    $ 51.57万
  • 项目类别:
    Studentship
Quantum Control of Gravity with Levitated Mechanics
利用悬浮力学对重力进行量子控制
  • 批准号:
    10032223
  • 财政年份:
    2022
  • 资助金额:
    $ 51.57万
  • 项目类别:
    EU-Funded
Quantum Control of Gravity with Levitated Mechanics
利用悬浮力学对重力进行量子控制
  • 批准号:
    10032229
  • 财政年份:
    2022
  • 资助金额:
    $ 51.57万
  • 项目类别:
    EU-Funded
Levitated Quantum Optomechanics with Trapped, Rotating Microparticles
具有捕获的旋转微粒的悬浮量子光力学
  • 批准号:
    DP220102303
  • 财政年份:
    2022
  • 资助金额:
    $ 51.57万
  • 项目类别:
    Discovery Projects
Levitated Quantum Diamonds
悬浮量子钻石
  • 批准号:
    ST/W006227/1
  • 财政年份:
    2022
  • 资助金额:
    $ 51.57万
  • 项目类别:
    Research Grant
Levitated Quantum Diamonds (LQD)
悬浮量子钻石 (LQD)
  • 批准号:
    ST/W006561/1
  • 财政年份:
    2022
  • 资助金额:
    $ 51.57万
  • 项目类别:
    Research Grant
Quantum levitated optomechanics : theory and experimental simulation
量子悬浮光力学:理论和实验模拟
  • 批准号:
    2579337
  • 财政年份:
    2021
  • 资助金额:
    $ 51.57万
  • 项目类别:
    Studentship
Test of Macroscopic Quantum Mechanics with Optically Levitated Mirrors
用光悬浮镜测试宏观量子力学
  • 批准号:
    18K18763
  • 财政年份:
    2018
  • 资助金额:
    $ 51.57万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
CAREER: Quantum Spin-Optomechanics of Optically Levitated Nanodiamonds
职业:光悬浮纳米金刚石的量子自旋光力学
  • 批准号:
    1555035
  • 财政年份:
    2016
  • 资助金额:
    $ 51.57万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了