Manipulating molecules with optical fields

用光场操纵分子

基本信息

  • 批准号:
    EP/C012445/2
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Fellowship
  • 财政年份:
    2006
  • 资助国家:
    英国
  • 起止时间:
    2006 至 无数据
  • 项目状态:
    已结题

项目摘要

The ability to cool a gas to temperatures that are less than 1 millionth of degree above absolute zero (-273 degrees celcius) has created great excitement in the scientific community. At this temperature the atoms are almost stationary and behave very differently to everyday gases that we are familiar with. For example, at very low temperatures the many atoms that make up the gas act in some ways as if they are one single atom. In this strange situation a new state of matter called a Bose-Einstein condensate is formed. These very low temperature atomic gases have been reached by using lasers to take energy out of the gas. Many people would like to cool any gas and particularly a gas made of molecules in the same way. However, the established method that has been successful for many atomic species does not work for molecules. Very cold molecular gases are likely to behave very differently to atomic gases and some very interesting effects have been predicted. These include the creation of gaseous crystals formed by polar molecules and the occurrance of unusual reactions between molecules that would not occur in our normal 'hot' world. Cold molecules can already be created using other methods but they move at very high speeds. One way to create stationary cold molecules is to slow them rapidly using high intensity laser beams. This researcher has only recently slowed and cooled benzene molecules, for the first time. The samelaser beams have also been used to focus a beam of molecules in a similar way to the focusing of light, except in this case the roles of light and matter are reversed and the light is the lens and the matter is focused. This proposal aims to build on this research by using laser light to slow beams of molecules until they are almost stationary. Laser light will also be used to trap and hold the molecules while different laser beams will be used to take energy out of the trapped molecules so that they become cold enough to observe the new phenomena mentioned above. This research also aims to focus beams of molecules and atoms to a width of approximately 50 billionths of a metre. This small beam may be used to 'write' specialized molecules onto a surface in a process called nanolithography. The focused beam may also be used to measure the number of atoms or molecules reflected from a surface; this can give information about the size, shape and type of surface with an resolution approaching 50 billionths of a metre. It may also be able to be developed as a new type of microscopy. Finally, by studying the detailed motion of molecules in the laser beams, the researcher aims to develop a new technique for separating a mixture of different molecules into their separate parts. This would be useful in areas such as pollution monitoring, where scientists currently find it difficult to separate some different gases.
将气体冷却到绝对零度以上百万分之一度(-273摄氏度)的能力在科学界引起了极大的兴奋。在这个温度下,原子几乎是静止的,其行为与我们熟悉的日常气体非常不同。例如,在非常低的温度下,组成气体的许多原子在某些方面就像它们是一个原子一样。在这种奇怪的情况下,形成了一种新的物质状态,称为玻色-爱因斯坦凝聚。这些温度非常低的原子气体是通过使用激光从气体中提取能量而获得的。许多人希望以同样的方式冷却任何气体,特别是由分子组成的气体。然而,已建立的方法,已成功地为许多原子物种不工作的分子。非常冷的分子气体的行为可能与原子气体非常不同,并且已经预测了一些非常有趣的效应。这些包括由极性分子形成的气态晶体的产生,以及分子之间发生的不寻常反应,这些反应在我们正常的“热”世界中不会发生。冷分子已经可以用其他方法产生,但它们的运动速度非常高。产生静止冷分子的一种方法是使用高强度激光束使它们快速减慢。这位研究人员最近才第一次减慢和冷却苯分子。同样的激光束也被用来聚焦一束分子,其方式与聚焦光的方式类似,不同的是在这种情况下,光和物质的角色颠倒了,光是透镜,物质被聚焦。这项提议旨在通过使用激光来减缓分子束直到它们几乎静止来建立这项研究。激光也将被用来捕获和保持分子,而不同的激光束将被用来从被捕获的分子中提取能量,使它们变得足够冷以观察上述新现象。这项研究还旨在将分子和原子束聚焦到大约50亿分之一米的宽度。这种小光束可用于在称为纳米光刻的过程中将特定分子“写入”表面。聚焦光束还可用于测量从表面反射的原子或分子的数量;这可以提供有关表面大小、形状和类型的信息,分辨率接近十亿分之50米。它也可能被开发为一种新型的显微镜。最后,通过研究激光束中分子的详细运动,研究人员旨在开发一种新技术,将不同分子的混合物分离成单独的部分。这在污染监测等领域将是有用的,科学家目前发现很难分离一些不同的气体。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Spectral narrowing in coherent rayleigh scattering.
相干瑞利散射中的光谱变窄。
  • DOI:
    10.1103/physrevlett.99.133001
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    Bookey HT
  • 通讯作者:
    Bookey HT
Narrow-band coherent Rayleigh scattering in a flame.
  • DOI:
    10.1364/oe.14.003461
  • 发表时间:
    2006-04
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    H. Bookey;A. Bishop;P. Barker
  • 通讯作者:
    H. Bookey;A. Bishop;P. Barker
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Peter Barker其他文献

Different Cytokine Patterns in emBMPR2/em-Mutation-Positive Patients and Patients With Pulmonary Arterial Hypertension Without Mutations and Their Influence on Survival
  • DOI:
    10.1016/j.chest.2022.01.019
  • 发表时间:
    2022-06-01
  • 期刊:
  • 影响因子:
    8.600
  • 作者:
    Max Schwiening;Emilia M. Swietlik;Divya Pandya;Keith Burling;Peter Barker;Oliver Y. Feng;Carmen M. Treacy;Susana Abreu;S. John Wort;Joanna Pepke-Zaba;Stefan Graf;Stefan J. Marciniak;Nicholas W. Morrell;Elaine Soon
  • 通讯作者:
    Elaine Soon
The age of the Weddell Basin
韦德尔盆地的年龄
  • DOI:
    10.1038/290489a0
  • 发表时间:
    1981-04-09
  • 期刊:
  • 影响因子:
    48.500
  • 作者:
    John L. LaBrecque;Peter Barker
  • 通讯作者:
    Peter Barker
“The Pain of a Dying Species” or the “New Waters” of a Bicultural Literature: Sorbian Literature since 1990
  • DOI:
    10.1007/s11059-006-0027-1
  • 发表时间:
    2006-12-01
  • 期刊:
  • 影响因子:
    0.200
  • 作者:
    Peter Barker
  • 通讯作者:
    Peter Barker
Copernicus, the orbs, and the equant
  • DOI:
    10.1007/bf00413764
  • 发表时间:
    1990-05-01
  • 期刊:
  • 影响因子:
    1.300
  • 作者:
    Peter Barker
  • 通讯作者:
    Peter Barker
What future for Antarctic geology?
南极地质学的未来是什么?
  • DOI:
    10.1038/269561b0
  • 发表时间:
    1977-10-01
  • 期刊:
  • 影响因子:
    48.500
  • 作者:
    Peter Barker
  • 通讯作者:
    Peter Barker

Peter Barker的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Peter Barker', 18)}}的其他基金

Fundamental science and technology with levitated cavity optomechanics
悬浮腔光力学基础科学技术
  • 批准号:
    EP/W029626/1
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Development of Levitated Quantum Optomechanical Sensors for Dark Matter Detection
用于暗物质探测的悬浮量子光机械传感器的开发
  • 批准号:
    ST/W006170/1
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Laser refrigeration on the nanoscale: From nanocryostats to quantum optomechanics
纳米级激光制冷:从纳米低温恒温器到量子光力学
  • 批准号:
    EP/S000267/1
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Research Grant
High-Power Unique-Stability Laser Source For Quantum Applications
适用于量子应用的高功率、独特稳定性激光源
  • 批准号:
    EP/R001596/1
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Quantum Cavity Optomechanics of Levitated Nanoparticles: from Foundations to Technologies
悬浮纳米粒子的量子腔光力学:从基础到技术
  • 批准号:
    EP/N031105/1
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Cavity optomechanics: towards sensing at the quantum limit
腔光力学:走向量子极限传感
  • 批准号:
    EP/H050434/1
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Creating ultra-cold molecules by sympathetic cooling
通过交感冷却产生超冷分子
  • 批准号:
    EP/F014937/1
  • 财政年份:
    2008
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Trapping and slowing cold molecules in pulsed optical lattices
在脉冲光学晶格中捕获和减缓冷分子
  • 批准号:
    GR/S77042/02
  • 财政年份:
    2006
  • 资助金额:
    --
  • 项目类别:
    Research Grant
The Unification of Physics and Astronomy
物理学与天文学的统一
  • 批准号:
    9111532
  • 财政年份:
    1992
  • 资助金额:
    --
  • 项目类别:
    Standard Grant

相似国自然基金

足细胞中补体系统活化以及在足细胞损伤中作用机制研究
  • 批准号:
    81170657
  • 批准年份:
    2011
  • 资助金额:
    58.0 万元
  • 项目类别:
    面上项目
双原子分子高激发振转能级的精确研究
  • 批准号:
    10774105
  • 批准年份:
    2007
  • 资助金额:
    35.0 万元
  • 项目类别:
    面上项目
TB方法在有机和生物大分子体系计算研究中的应用
  • 批准号:
    20773047
  • 批准年份:
    2007
  • 资助金额:
    26.0 万元
  • 项目类别:
    面上项目

相似海外基金

Investigation of modified water vibration by surrounding molecules via operand nonlinear optical response
通过操作数非线性光学响应研究周围分子改变的水振动
  • 批准号:
    23K19257
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Defining the Spatiotemporal Underpinnings of Neutrophil Recruitment, Microvascular Flow, and Oxygenation in Ischemic Stroke
定义缺血性中风中中性粒细胞募集、微血管血流和氧合的时空基础
  • 批准号:
    10449713
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Defining the molecular assembly mechanism of bacterial amyloid from single protein molecules to mature fibrils
定义细菌淀粉样蛋白从单个蛋白质分子到成熟原纤维的分子组装机制
  • 批准号:
    494840
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Operating Grants
Optical tweezers of calcium monofluoride molecules
一氟化钙分子的光镊
  • 批准号:
    2866148
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Studentship
An automated optical device that uses direct visualisation of single molecules for routine screening of cancer biomarkers.
一种自动化光学设备,使用单分子的直接可视化来常规筛查癌症生物标志物。
  • 批准号:
    10037078
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Collaborative R&D
Assembly of individual molecules in arrays of optical tweezers
光镊阵列中单个分子的组装
  • 批准号:
    2748040
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Studentship
Dynamics of Molecules in Extreme Rotational States Made with an Optical Centrifuge
用光学离心机制造的极端旋转状态下的分子动力学
  • 批准号:
    2155135
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CHIRALFORCE_Chiral separation of molecules enabled by enantioselective optical forces in integrated nanophotonic circuits
CHIRALFORCE_集成纳米光子电路中通过对映选择性光学力实现分子的手性分离
  • 批准号:
    10045438
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    EU-Funded
Mechanisms of emergence from general anesthesia
全身麻醉苏醒机制
  • 批准号:
    10693281
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Neurophotonic Advances for Mechanistic Investigation of the Role of Capillary Dysfunction in Stroke Recovery
毛细血管功能障碍在中风恢复中作用机制研究的神经光子学进展
  • 批准号:
    10586375
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了