ParaPara: A quantum parametric amplifier using quantum paraelectricity
ParaPara:利用量子顺电的量子参量放大器
基本信息
- 批准号:ST/W006502/1
- 负责人:
- 金额:$ 37.37万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2022
- 资助国家:英国
- 起止时间:2022 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The axion is a particle that has been hypothesised to answer two of the most important outstanding questions of present-day physics: What is the composition of the dark matter whose gravity holds galaxies together? And why does the strong nuclear force so exactly obey charge-parity symmetry? The axion dark matter hypothesis is that enormous numbers of axions were created shortly after the Big Bang and have since congregated as a dark matter halo in every galaxy, including our own. In this hypothesis, trillions of axions pass through our laboratories (and our bodies) every second, but they have never been measured because their interaction with ordinary matter is so weak. A direct detection of galactic axions would be a major breakthrough in both particle physics and cosmology.The Quantum Search for the Hidden Sector (QSHS) collaboration, part of the UK's Quantum Technology for Fundamental Physics programme, aims to detect axions by measuring a radio-frequency signal that they give off when they decay in a magnetic field. Because this signal is tiny (approximately a billion billion times smaller than the signal detected by a mobile phone), it can only be measured using an exquisitely sensitive electronic amplifier. Indeed, unless the amplifier works at the highest precision allowed by quantum mechanics, it would take many human lifetimes' worth of averaging to search through the likely frequencies at which the axions might emit. Developing radio-frequency quantum amplifiers which have the necessary sensitivity, and characterising them in our test facility, is one of the main tasks of this collaboration.Although quantum amplifiers promise an enormous speed-up of axion searches compared to conventional classical amplifiers, they suffer an important limitation. A magnetic field is needed to stimulate axions to decay, but such a field is fatal to all existing quantum amplifiers. In the QSHS project, as in other axion searches, this problem will be partly mitigated using magnetic shields, but it makes the experimental engineering much harder than we would like and means that we cannot fully exploit the capabilities that quantum amplifiers offer.This project will develop a new class of quantum amplifier that is robust against magnetic fields and therefore perfectly suited to search for an axion signal. Our new design incorporates quantum paraelectric crystals, which are non-linear dielectric materials. The non-linearity means that we can transfer energy from a pump voltage to the signal, thus amplifying it. This process of parametric amplification allows in principle for extremely low noise.To realise this new amplifier, we will first measure the properties of a suitable quantum paraelectric material at low temperature, and use the results to implement and test a proof-of-principle device. Using optimised materials, we will then fabricate an advanced device (a so-called travelling wave amplifier) capable of amplifying a wide range of frequencies. Finally we will operate the amplifier inside the QSHS test facility and find out whether it can indeed speed up the search for axions, both in this detector and in future larger experiments.If this new amplifier can perform quantum-limited measurements in a magnetic field, it will be a breakthrough not only for axion searches, but in other rapidly developing areas of quantum technology that require extremely precise electrical measurements in a magnetic field. Examples include quantum computing using semiconductors, and studying new materials using magnetic resonance.
轴子是一种粒子,被假设为回答当今物理学中两个最重要的悬而未决的问题:暗物质的组成是什么,其引力将星系聚集在一起?为什么强核力如此精确地服从电荷宇称对称性?轴子暗物质假说认为,大爆炸后不久就产生了大量的轴子,并且此后在每个星系(包括我们自己的星系)中聚集为暗物质晕。在这个假设中,每秒有数万亿个轴子穿过我们的实验室(和我们的身体),但它们从未被测量过,因为它们与普通物质的相互作用非常微弱。直接探测银河系轴子将是粒子物理学和宇宙学的重大突破。量子搜索隐藏扇区(QSHS)合作是英国基础物理量子技术计划的一部分,旨在通过测量轴子在磁场中衰变时发出的射频信号来探测轴子。因为这个信号很小(大约比移动的手机检测到的信号小10亿倍),所以只能使用灵敏度极高的电子放大器来测量。事实上,除非放大器以量子力学所允许的最高精度工作,否则需要许多人一生的平均时间来搜索轴子可能发射的可能频率。开发具有必要灵敏度的射频量子放大器,并在我们的测试设备中对其进行表征,是这项合作的主要任务之一。尽管量子放大器与传统的经典放大器相比,有望大大加快轴子搜索的速度,但它们存在一个重要的限制。需要磁场来刺激轴子衰变,但这样的场对所有现有的量子放大器都是致命的。在QSHS项目中,就像在其他轴子搜索中一样,这个问题将通过使用磁屏蔽来部分缓解,但它使实验工程比我们想象的要困难得多,也意味着我们无法充分利用量子放大器提供的功能。该项目将开发一种新的量子放大器,它对磁场具有鲁棒性,因此非常适合搜索轴子信号。我们的新设计采用了量子顺电晶体,这是一种非线性介电材料。非线性意味着我们可以将能量从泵浦电压转移到信号,从而放大它。这种参量放大过程原则上允许极低的噪声。为了实现这种新的放大器,我们将首先在低温下测量合适的量子顺电材料的特性,并使用结果来实现和测试原理验证设备。使用优化的材料,我们将制造一种先进的设备(所谓的行波放大器),能够放大宽范围的频率。最后,我们将在QSHS测试设备内操作放大器,并发现它是否确实可以在这个探测器和未来更大的实验中加速对轴子的搜索。如果这个新的放大器可以在磁场中进行量子限制测量,它将不仅是轴子搜索的突破,但在其他快速发展的量子技术领域,需要在磁场中进行极其精确的电学测量。例子包括使用半导体的量子计算,以及使用磁共振研究新材料。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Probing quantum devices with radio-frequency reflectometry
使用射频反射仪探测量子器件
- DOI:10.1063/5.0088229
- 发表时间:2023
- 期刊:
- 影响因子:15
- 作者:Vigneau F
- 通讯作者:Vigneau F
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Edward Laird其他文献
Toward a deep learning system for making sense of unlabeled multimodal data
构建一个理解未标记多模态数据的深度学习系统
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Barry Y. Chen;T. N. Mundhenk;Karl Ni;Dr. W. Philip Kegelmeyer;M. Jacobson;Dr. Rob Miller;Dr. Marc Lichtman;Edward Laird;Dr. Paul Jones;Dr. S. Lynch;Dr. Kathleen M. Vogel;Joe McCloskey;David J. Mountain - 通讯作者:
David J. Mountain
Edward Laird的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Simulation and certification of the ground state of many-body systems on quantum simulators
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
Mapping Quantum Chromodynamics by Nuclear Collisions at High and Moderate Energies
- 批准号:11875153
- 批准年份:2018
- 资助金额:60.0 万元
- 项目类别:面上项目
高温气化过程中煤灰矿物质演变规律的量子化学计算与实验研究
- 批准号:50906055
- 批准年份:2009
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
广义Besov函数类上的几个逼近特征
- 批准号:10926056
- 批准年份:2009
- 资助金额:3.0 万元
- 项目类别:数学天元基金项目
基于量子点多色荧光细胞标志谱型的CTC鉴别与肿瘤个体化诊治的研究
- 批准号:30772507
- 批准年份:2007
- 资助金额:30.0 万元
- 项目类别:面上项目
驻波场驱动的量子相干效应的研究
- 批准号:10774058
- 批准年份:2007
- 资助金额:35.0 万元
- 项目类别:面上项目
量子计算电路的设计和综合
- 批准号:60676020
- 批准年份:2006
- 资助金额:31.0 万元
- 项目类别:面上项目
半导体物理中的非线性偏微分方程组
- 批准号:10541001
- 批准年份:2005
- 资助金额:4.0 万元
- 项目类别:专项基金项目
量子点技术对细胞表面蛋白和受体在体内分布的研究
- 批准号:30570686
- 批准年份:2005
- 资助金额:26.0 万元
- 项目类别:面上项目
相似海外基金
A quantum parametric amplifier using quantum paraelectricity
利用量子顺电的量子参量放大器
- 批准号:
ST/W006464/1 - 财政年份:2022
- 资助金额:
$ 37.37万 - 项目类别:
Research Grant
Magnons for quantum information
用于量子信息的磁振子
- 批准号:
21K13847 - 财政年份:2021
- 资助金额:
$ 37.37万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
STTR Phase II: Versatile Low-Noise Traveling-Wave Parametric Amplifier for Quantum Information Processing
STTR 第二阶段:用于量子信息处理的多功能低噪声行波参量放大器
- 批准号:
2025848 - 财政年份:2021
- 资助金额:
$ 37.37万 - 项目类别:
Cooperative Agreement
Generation of time-bin entangled microwave states with quantum feedback
利用量子反馈生成时间段纠缠微波态
- 批准号:
21J12292 - 财政年份:2021
- 资助金额:
$ 37.37万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Microwave quantum optics with tunable cavity resonators and superconducting qubits
具有可调谐腔谐振器和超导量子位的微波量子光学
- 批准号:
20F20757 - 财政年份:2020
- 资助金额:
$ 37.37万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Superconducting Parametric Amplifier for Astronomy and Quantum Computing
用于天文学和量子计算的超导参量放大器
- 批准号:
2285266 - 财政年份:2019
- 资助金额:
$ 37.37万 - 项目类别:
Studentship
SBIR Phase I: Versatile Low-Noise Traveling-Wave Parametric Amplifier for Quantum Information Processing
SBIR 第一阶段:用于量子信息处理的多功能低噪声行波参量放大器
- 批准号:
1843017 - 财政年份:2019
- 资助金额:
$ 37.37万 - 项目类别:
Standard Grant
Exploiting nonlinear oscillators for quantum information processing and measurement
利用非线性振荡器进行量子信息处理和测量
- 批准号:
18F18364 - 财政年份:2018
- 资助金额:
$ 37.37万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Design and realisation of a wide-band sub quantum noise parametric amplifier based on the non linear kinetic inductance of superconductors
基于超导非线性动感的宽带亚量子噪声参量放大器的设计与实现
- 批准号:
2375513 - 财政年份:2017
- 资助金额:
$ 37.37万 - 项目类别:
Studentship
Broadband Quantum limited Traveling-Wave Parametric Amplifier based on a Superconducting Metamaterial Transmission Line
基于超导超材料传输线的宽带量子受限行波参量放大器
- 批准号:
1608448 - 财政年份:2016
- 资助金额:
$ 37.37万 - 项目类别:
Standard Grant














{{item.name}}会员




