A Quantum Jump Sensor for Dark Matter Detection

用于暗物质检测的量子跃迁传感器

基本信息

  • 批准号:
    ST/W006650/1
  • 负责人:
  • 金额:
    $ 59.4万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2022
  • 资助国家:
    英国
  • 起止时间:
    2022 至 无数据
  • 项目状态:
    未结题

项目摘要

It is remarkable that on a cosmic scale, we do not know what makes up 84% of the matter in the universe. This dark matter has a profound impact on the movement of stars, the formation of galaxies and the patterns in the afterglow of the Big Bang, but we can only hypothesise what its true nature might be. We will build a new type of quantum sensor using a single isolated electron that will be sensitive enough to tell if dark matter is made from certain types of new particles.It seems likely that most of the missing matter is some new type of substance which barely interacts with ordinary matter electromagnetically. One hint for what this might be comes from the differing symmetries of the strong and weak nuclear forces, which led particle physicists to propose a new particle, the axion. The theory which predicted the axion does not predict its mass, but light axions around 10^9-10^12 times less than the mass of an electron would have been created in the early universe and still be present today as dark matter.As well as hints from particle physics, there are also indications from cosmology as to the properties of dark matter. Observations of the microwave transition frequencies of hydrogen in the period of the early universe known as the cosmic dawn suggest that it was colder than expected. This was also the period where dark matter could collide with ordinary mater and reduce its temperature. Exotic particles with tiny charges - known as millicharged particles - would account for this observation. Many experiments have been carried out to detect axions and millicharged particles, but none have been discovered. The most sensitive experiments to detect axions use a strong magnetic field to encourage the axions to decay into microwave photons with a frequency directly related to the axion mass. They then detect those microwaves. Unfortunately, for an important axion mass range, state-of-the art microwave detectors have a fundamental and unavoidable noise source which dwarfs the axion signal. This minimum noise, referred to as the Standard Quantum Limit can be overcome by counting the number of photons which make up the electromagnetic field. No suitable single photon counter exists in the range 30-60 GHz, so we will invent one. The technology we have chosen is a single electron, trapped in a combination of electric and magnetic fields. As the electron absorbs a microwave photon, its quantum orbit changes detectably. A trapped electron is also sensitive to collisions with any millicharged dark matter, also changing its orbit after a collision. This change in orbit can be measured using quantum jump spectroscopy, which was previously used to measure the electron's magnetic moment.If we could uncover the nature of dark matter, we would finally have understood the most abundant substance in the universe and characterising its precise properties would have implications for many aspects of astrophysics. A discovery of the axion or millicharged particle would only be the start of a new era of particle physics since both particles would be expected to be accompanied by others. In the case of the axion, these could be much heavier Higgs particles, giving an additional strong argument for the construction of a Future Circular Collider at CERN to discover them. Finally, this device is a sensor for the weakest detectable microwave signals, which could be applied to improved microwave astronomy, molecular spectroscopy for the identification of chemical substances and sensing.
值得注意的是,在宇宙尺度上,我们不知道宇宙中84%的物质是由什么组成的。这种暗物质对恒星的运动、星系的形成和大爆炸余辉的模式有着深远的影响,但我们只能假设它的真实性质。我们将用一个孤立的电子来建造一种新型的量子传感器,这种传感器的灵敏度足以判断暗物质是否是由某些类型的新粒子构成的。看起来大部分缺失的物质很可能是某种新的物质,它们几乎不与普通物质发生电磁相互作用。这可能是什么的一个线索来自于强核力和弱核力的不同对称性,这使得粒子物理学家提出了一种新的粒子,轴子。预言轴子的理论并没有预言它的质量,但是在早期宇宙中,大约比电子质量小10^9-10^12倍的轻轴子应该已经被创造出来,并且今天仍然作为暗物质存在。除了粒子物理学的暗示之外,宇宙学也有关于暗物质性质的迹象。在被称为宇宙黎明的早期宇宙时期,对氢的微波跃迁频率的观测表明,它比预期的要冷。这也是暗物质可以与普通物质碰撞并降低其温度的时期。带有微小电荷的奇异粒子--被称为毫荷电粒子--可以解释这一观察结果。人们已经进行了许多实验来探测轴子和毫荷电粒子,但都没有发现。探测轴子的最灵敏的实验是使用强磁场来促使轴子衰变成微波光子,其频率与轴子质量直接相关。然后他们会探测到这些微波。不幸的是,对于一个重要的轴子质量范围,最先进的微波探测器有一个基本的和不可避免的噪声源,使轴子信号相形见绌。这个最小的噪声,被称为标准量子极限,可以通过计算构成电磁场的光子的数量来克服。在30-60 GHz范围内没有合适的单光子计数器,所以我们将发明一个。我们选择的技术是一个单电子,被困在电场和磁场的组合中。当电子吸收一个微波光子时,它的量子轨道会发生可检测的变化。被捕获的电子对与任何毫荷电暗物质的碰撞也很敏感,在碰撞后也会改变其轨道。这种轨道的变化可以用量子跃迁光谱学来测量,这种光谱学以前被用来测量电子的磁矩。如果我们能够揭示暗物质的本质,我们就最终了解了宇宙中最丰富的物质,并且描述它的精确性质将对天体物理学的许多方面产生影响。轴子或毫荷电粒子的发现将仅仅是粒子物理学新时代的开始,因为这两种粒子都将被其他粒子伴随。在轴子的例子中,这些可能是重得多的希格斯粒子,这为在欧洲核子研究中心建造一个未来的圆形对撞机来发现它们提供了额外的有力论据。最后,该设备是一个传感器,用于最弱的可检测微波信号,可应用于改进的微波天文学,分子光谱学,用于识别化学物质和传感。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jack Devlin其他文献

A Proposal for a Low‐Frequency Axion Search in the 1–2 μ$umu$ eV Range and Below with the BabyIAXO Magnet
使用 BabyIAXO 磁铁在 1-2 μ$umu$ eV 范围及以下进行低频轴子搜索的建议
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    3
  • 作者:
    S. Ahyoune;Alejandro Álvarez Melcón;S. Arguedas Cuendis;S. Calatroni;C. Cogollos;Jack Devlin;A. Díaz;D. Díez;B. Döbrich;Javier Galindo;J. D. Gallego;J. García;B. Gimeno;J. Golm;Yikun Gu;L. Herwig;Igor García Irastorza;A. Lozano;C. Malbrunot;Jordi Miralda;J. Monzó;P. Navarro;J. R. Navarro;Javier Redondo;José Reina‐Valero;K. Schmieden;Tim Schneemann;M. Siodlaczek;S. Ulmer;W. Wuensch
  • 通讯作者:
    W. Wuensch

Jack Devlin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jack Devlin', 18)}}的其他基金

Astroparticle Physics with a Trapped Electron
俘获电子的天体粒子物理学
  • 批准号:
    EP/Y036263/1
  • 财政年份:
    2024
  • 资助金额:
    $ 59.4万
  • 项目类别:
    Research Grant

相似国自然基金

光滑拟射影复代数簇的 jump loci 与 L^2 类不变量
  • 批准号:
    12001511
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
Fe-Ga(Al)磁致伸缩“jump”效应能量转换问题
  • 批准号:
    51371028
  • 批准年份:
    2013
  • 资助金额:
    80.0 万元
  • 项目类别:
    面上项目

相似海外基金

CDS&E/Collaborative Research: Local Gaussian Process Approaches for Predicting Jump Behaviors of Engineering Systems
CDS
  • 批准号:
    2420358
  • 财政年份:
    2024
  • 资助金额:
    $ 59.4万
  • 项目类别:
    Standard Grant
Diffusions and jump processes on groups and manifolds
群和流形上的扩散和跳跃过程
  • 批准号:
    2343868
  • 财政年份:
    2024
  • 资助金额:
    $ 59.4万
  • 项目类别:
    Continuing Grant
Postdoctoral Fellowship: MPS-Ascend: Quantifying Accelerated Reaction Kinetics in Microdroplets with pH-Jump and Mass Spectrometry: From Small Molecules to Proteins and Beyond
博士后奖学金:MPS-Ascend:利用 pH 跳跃和质谱定量微滴中的加速反应动力学:从小分子到蛋白质及其他
  • 批准号:
    2316167
  • 财政年份:
    2023
  • 资助金额:
    $ 59.4万
  • 项目类别:
    Fellowship Award
Energy-efficient Electric Jump Take-Off
节能电动跳跃起飞
  • 批准号:
    10061816
  • 财政年份:
    2023
  • 资助金额:
    $ 59.4万
  • 项目类别:
    Collaborative R&D
How do kangaroo herpesviruses jump to new host species?
袋鼠疱疹病毒如何转移到新的宿主物种?
  • 批准号:
    DP230102121
  • 财政年份:
    2023
  • 资助金额:
    $ 59.4万
  • 项目类别:
    Discovery Projects
Increasing access to chemistry for high schoolers with blindness: a program to jump start Central Texas
增加失明高中生接触化学的机会:一项启动德克萨斯州中部的计划
  • 批准号:
    10600066
  • 财政年份:
    2022
  • 资助金额:
    $ 59.4万
  • 项目类别:
CDS&E/Collaborative Research: Local Gaussian Process Approaches for Predicting Jump Behaviors of Engineering Systems
CDS
  • 批准号:
    2152655
  • 财政年份:
    2022
  • 资助金额:
    $ 59.4万
  • 项目类别:
    Standard Grant
CDS&E/Collaborative Research: Local Gaussian Process Approaches for Predicting Jump Behaviors of Engineering Systems
CDS
  • 批准号:
    2152679
  • 财政年份:
    2022
  • 资助金额:
    $ 59.4万
  • 项目类别:
    Standard Grant
Bio-Robots: Crawl, Jump, and Slither!
仿生机器人:爬行、跳跃和滑行!
  • 批准号:
    EP/W033755/1
  • 财政年份:
    2022
  • 资助金额:
    $ 59.4万
  • 项目类别:
    Research Grant
Boom-Time Adventure Sports Computer for height of jump, and Competition Timing with live telemetry
Boom-Time 冒险运动电脑可用于跳跃高度和实时遥测比赛计时
  • 批准号:
    10032981
  • 财政年份:
    2022
  • 资助金额:
    $ 59.4万
  • 项目类别:
    Collaborative R&D
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了