Fundamental Implications of Fields, Strings and Gravity
场、弦和引力的基本含义
基本信息
- 批准号:ST/X000656/1
- 负责人:
- 金额:$ 29.26万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2023
- 资助国家:英国
- 起止时间:2023 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
In the 20th century, General Relativity and Quantum Field Theory emerged as extraordinarily successful theories used to describe physics on very large, and very small scales respectively. They are however incompatible when considering very massive, but very small objects, such as black hole singularities, and the beginning of the universe. New physics is required to provide a unified theory, and String Theory is the most promising candidate, as it can be used to obtain Einstein's equations from a quantum system. It has produced new ways to understand aspects of black hole evaporation, predicted by Hawking, as well as novel "holographic" techniques leading to remarkable relationships between quantities computed using geometric methods and observables in strongly coupled quantum field theories which have hitherto been difficult to calculate. Our proposal is focused on developing new geometric and algebraic techniques to investigate key aspects of quantum theories and geometric solutions related to String Theory. In holography, we will investigate how geometry emerges from matrix quantum mechanics, and use this to probe how physical properties of black holes vary during the evaporation process, and also to describe how the related quantum states correspond to geometric solutions. Our group has expertise in machine learning and numerical simulation techniques which will be utilized in this analysis. We will also use our expertise in integrability to examine in detail the holographic duality between quantum states and geometric solutions. Integrability provides powerful tools for solving certain quantum systems by extending the solutions away from a limited range of physical parameters, to more general cases. We will develop new methods for analysing massless quantum states in String Theory, leading to a much more complete understanding of these theories. Further progress will also be made in applying "higher geometry" methods to investigate hidden geometric structures in amplitudes. Amplitudes are crucial for describing quantum state interactions, and are needed in particle physics experiments, however amplitude calculations are usually very complicated. Using higher geometry algebraic structures we will construct new geometric and algebraic methods for amplitude calculation.In terms of geometry, we will develop new methods to classify the algebraic structures associated with de-Sitter solutions in ten and eleven dimensional supergravities, which are the low energy limit of string theory. Such solutions are relevant to cosmology, and de-Sitter geometries also arise in the geometry near to the event horizons of certain black holes, and holographic methods have been developed to understand the quantum states associated with these geometries. Remarkably, there has recently also been a connection made between String Theory geometry, and equations in hydrodynamics. Certain gravitational solutions, such as geometries associated with black hole horizons, give rise to the Navier-Stokes equations of hydrodynamics. We will investigate if this construction can be generalized, utilizing special Penrose co-ordinates, to see if hydrodynamic equations are more generic properties of supergravity solutions. We will also examine if "higher geometry" methods developed in String Theory can be adapted to describe hydrodynamic solutions such as vortices, which are relevant to the study of atmospheric fronts.These interconnected projects will produce results of significant impact in theoretical physics, with potential real-world applications in experimental particle physics, machine learning techniques, and properties of black holes. We will pursue this work using our extensive national and international collaborations. It will help to answer important key elements of the Science Challenges supported by STFC, relating to the true nature of gravity and space-time, and what are the fundamental laws, particles, symmetries and fields of physics.
在20世纪世纪,广义相对论和量子场论分别作为非常成功的理论出现在非常大和非常小的尺度上。然而,当考虑到非常大,但非常小的物体,如黑洞奇点和宇宙的起源时,它们是不相容的。新的物理学需要提供一个统一的理论,而弦论是最有希望的候选者,因为它可以用来从量子系统获得爱因斯坦方程。它产生了新的方法来理解霍金预测的黑洞蒸发方面,以及新颖的“全息”技术,导致使用几何方法计算的量与强耦合量子场论中迄今难以计算的可观测量之间的显着关系。我们的建议集中在开发新的几何和代数技术,以研究量子理论的关键方面和与弦论相关的几何解决方案。在全息中,我们将研究几何如何从矩阵量子力学中出现,并使用它来探测黑洞的物理性质如何在蒸发过程中变化,并描述相关的量子态如何对应于几何解。我们的团队拥有机器学习和数值模拟技术方面的专业知识,这些技术将用于此分析。我们还将利用我们在可积性方面的专业知识,详细研究量子态和几何解之间的全息对偶性。可积性为解决某些量子系统提供了强大的工具,将解决方案从有限的物理参数范围扩展到更一般的情况。我们将开发新的方法来分析弦论中的无质量量子态,从而更全面地理解这些理论。在应用“高等几何”方法研究振幅中隐藏的几何结构方面也将取得进一步的进展。振幅是描述量子态相互作用的关键,也是粒子物理实验中所需要的,然而振幅的计算通常非常复杂。利用高等几何代数结构,我们将构造新的振幅计算的几何和代数方法,在几何方面,我们将发展新的方法来分类与十维和十一维超引力中的de-Sitter解相关的代数结构,这是弦理论的低能极限。这样的解与宇宙学有关,而de-Sitter几何也出现在某些黑洞事件视界附近的几何中,全息方法已经被开发出来来理解与这些几何相关的量子态。值得注意的是,最近弦理论几何和流体力学方程之间也有了联系。某些引力解,例如与黑洞视界相关的几何学,产生了流体力学的纳维尔-斯托克斯方程。我们将研究这种结构是否可以推广,利用特殊的彭罗斯坐标,看看流体动力学方程是否是超重力解的更一般的性质。我们还将研究弦论中发展的“高等几何”方法是否适用于描述与大气锋研究相关的流体动力学解,如涡旋。这些相互关联的项目将产生在理论物理学中具有重大影响的结果,并在实验粒子物理学、机器学习技术和黑洞性质方面具有潜在的实际应用。我们将利用我们广泛的国家和国际合作来开展这项工作。它将有助于回答STFC支持的科学挑战的重要关键要素,涉及引力和时空的真实性质,以及物理学的基本定律,粒子,对称性和场。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jan Gutowski其他文献
Jan Gutowski的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jan Gutowski', 18)}}的其他基金
Stongly Coupled Field Theories, String Theory and Gravity
强耦合场论、弦理论和引力
- 批准号:
ST/P000487/1 - 财政年份:2017
- 资助金额:
$ 29.26万 - 项目类别:
Research Grant
相似国自然基金
Financial Constraints in China
and Their Policy Implications
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国优秀青年学 者研究基金项目
相似海外基金
Renewal application: How do ecological trade-offs drive ectomycorrhizal fungal community assembly? Fine- scale processes with large-scale implications
更新应用:生态权衡如何驱动外生菌根真菌群落组装?
- 批准号:
MR/Y011503/1 - 财政年份:2025
- 资助金额:
$ 29.26万 - 项目类别:
Fellowship
Greenland-wide Assessment of Proglacial Melange Variability and Implications for Glacier Retreat
格陵兰范围前冰川混杂物变异性及其对冰川退缩的影响的评估
- 批准号:
2336627 - 财政年份:2024
- 资助金额:
$ 29.26万 - 项目类别:
Standard Grant
Differentiating Cyclogenesis with and without Large Amplitude Mesoscale Gravity Waves: Implications for Rapidly Varying Heavy Precipitation and Gusty Winds
区分有和没有大振幅中尺度重力波的气旋发生:对快速变化的强降水和阵风的影响
- 批准号:
2334171 - 财政年份:2024
- 资助金额:
$ 29.26万 - 项目类别:
Continuing Grant
Understanding the implications of pandemic delays for the end of life
了解大流行延迟对生命终结的影响
- 批准号:
DP240101775 - 财政年份:2024
- 资助金额:
$ 29.26万 - 项目类别:
Discovery Projects
Implications of Global Economic Forces for Domestic Monetary Policy
全球经济力量对国内货币政策的影响
- 批准号:
DP240100970 - 财政年份:2024
- 资助金额:
$ 29.26万 - 项目类别:
Discovery Projects
An interdisciplinary analytical framework for high-mountain landslides and cascading hazards: implications for communities and infrastructure
高山滑坡和级联灾害的跨学科分析框架:对社区和基础设施的影响
- 批准号:
NE/Z503502/1 - 财政年份:2024
- 资助金额:
$ 29.26万 - 项目类别:
Research Grant
Functional implications of focal white matter lesions on neuronal circuits
局灶性白质病变对神经元回路的功能影响
- 批准号:
MR/Y014537/1 - 财政年份:2024
- 资助金额:
$ 29.26万 - 项目类别:
Research Grant
Postdoctoral Fellowship: EAR-PF: Petrochronometers as provenance proxies: implications for the spatio-temporal evolution of continental collision to escape
博士后奖学金:EAR-PF:石油测时计作为起源代理:对大陆碰撞逃逸的时空演化的影响
- 批准号:
2305217 - 财政年份:2024
- 资助金额:
$ 29.26万 - 项目类别:
Fellowship Award
NSF-NSERC: Fairness Fundamentals: Geometry-inspired Algorithms and Long-term Implications
NSF-NSERC:公平基础:几何启发的算法和长期影响
- 批准号:
2342253 - 财政年份:2024
- 资助金额:
$ 29.26万 - 项目类别:
Standard Grant
Collaborative Research: Drivers and Biogeochemical Implications of Saltwater Intrusion Along Arctic Coastlines
合作研究:北极海岸线盐水入侵的驱动因素和生物地球化学影响
- 批准号:
2316041 - 财政年份:2024
- 资助金额:
$ 29.26万 - 项目类别:
Standard Grant














{{item.name}}会员




