Proposal for IPPP Consolidated Grant (2023-2026)
IPPP 综合赠款提案(2023-2026 年)
基本信息
- 批准号:ST/X000745/1
- 负责人:
- 金额:$ 201.91万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2023
- 资助国家:英国
- 起止时间:2023 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Particle physics research informs us about the nature of matter on microscopic scales. As we step down the length scales below the length scale of the atom, 10^(-10) meters, and past the length scale of the atomic nucleus, 10^(-15) meters, we enter the realm of particle physics. In this realm, there are three well-identified interactions. First, the strong interactions are responsible for the binding of quarks and gluons to produce protons, neutrons, and other particles collectively called hadrons. Second, the electroweak interactions, responsible for the radiation of photons (light) from matter and the radiation of the weak force carriers, the W and Z bosons, were discovered at CERN in 1983. Third, the interactions of the Higgs bosons. The Higgs boson was discovered at CERN in 2012. The interactions of all of these ingredients are controlled by a mathematical structure known as the Standard Model (SM) gauge theory of electromagnetic, weak and strong interactions. This theory has so far withstood all the challenges posed by various accelerators, of which the latest and most energetic is the LHC. The SM is confirmed - with the unification of electromagnetism and weak interactions proved and tested to one part per mille. Strong interaction effects have been tested to the per cent level.Since 2015, the Large Hadron Collider (LHC) has been accelerating and colliding protons at much higher energies than ever before, close to the design energy of 14 TeV. This higher energy probes much shorter distance scales than ever before. The high energy reach of the LHC will also allow the detailed study of the Higgs boson and exploration of TeV scale physics. However, the LHC experiments are significantly more complex than any previous particle physics experiment. Identifying the nature of physics at the TeV scale will require intense collaborative efforts between experimentalists and theorists. On the theoretical side, high-precision calculations of SM processes are needed to distinguish possible signals of new physics from SM backgrounds. Possible hints of new physics need to be compared with different models of physics beyond the SM to disentangle TeV-scale physics' underlying structure. The IPPP has already established close connections with the UK and international experimental groups and is perfectly placed to help maximise the UK contribution to understanding the LHC data. There is also a strong effort in planning and designing the next generation of particle physics experiments. The IPPP will continue its role in assessing the physics potential and the design of future accelerators. The Standard Model received remarkable confirmation in recent years with the discovery of the Higgs, a monumental leap forwards in understanding that happens maybe once a century. That discovery completed the Standard Model and offered the first look at electroweak symmetry breaking. And yet many deep questions have so far remained tantalisingly untouched. These questions range from the profoundly conceptual to the observational, and they are the most promising opportunities for progress. Indeed so far, no deviation from the Standard Model has been observed, and it seems that many of the more straightforward solutions to these questions are not realised as we thought they might be. Therefore, all possible avenues and ideas must be explored, with a multi-faceted approach that confronts theoretical expectations with the whole gamut of available evidence from astrophysical to (in)direct detection to the collider. Consequently, the IPPP will increase its research endeavours in the science questions that can be answered with non-collider experiments. This includes the search for light dark matter, axions, the study of stochastic gravitational waves spectra and non-perturbative phenomena.
粒子物理学的研究告诉我们微观尺度上物质的本质。当我们沿着长度尺度往下走,低于原子的长度尺度10^(-10)米,超过原子核的长度尺度10^(-15)米,我们就进入了粒子物理学的领域。在这个领域中,有三种明确的相互作用。首先,强相互作用使夸克和胶子结合,产生质子、中子和其他统称为强子的粒子。其次,1983年在欧洲核子研究中心发现了电弱相互作用,负责物质的光子(光)辐射和弱力载流子W和Z玻色子的辐射。第三,希格斯玻色子的相互作用。希格斯玻色子是2012年在欧洲核子研究中心发现的。所有这些成分的相互作用都是由一个数学结构控制的,这个数学结构被称为电磁、弱和强相互作用的标准模型规范理论。到目前为止,这一理论经受住了各种加速器带来的所有挑战,其中最新、最具活力的是大型强子对撞机。SM被证实了——电磁和弱相互作用的统一被证明和测试到了每英里的一部分。强烈的相互作用效应已被测试到百分之百的水平。自2015年以来,大型强子对撞机(LHC)一直在以比以往更高的能量加速和碰撞质子,接近14 TeV的设计能量。这种高能量探测的距离比以往任何时候都要短得多。大型强子对撞机的高能量范围也将允许对希格斯玻色子的详细研究和对TeV尺度物理的探索。然而,大型强子对撞机的实验比以往任何粒子物理实验都要复杂得多。确定TeV尺度下的物理性质需要实验家和理论家之间的密切合作。在理论方面,需要对SM过程进行高精度计算,以从SM背景中区分可能的新物理信号。新物理学的可能线索需要与SM之外的不同物理模型进行比较,以解开tev尺度物理学的潜在结构。IPPP已经与英国和国际实验团体建立了密切的联系,并且完全有能力帮助英国最大限度地为理解LHC数据做出贡献。在规划和设计下一代粒子物理实验方面也有很大的努力。IPPP将继续在评估物理潜力和设计未来加速器方面发挥作用。近年来,随着希格斯粒子的发现,标准模型得到了显著的证实,这是一个世纪才发生一次的巨大飞跃。这一发现完善了标准模型,并首次揭示了电弱对称性破缺。然而,到目前为止,许多深层次的问题仍未触及。这些问题的范围从深刻的概念到观察,它们是最有希望取得进展的机会。事实上,到目前为止,还没有观察到任何偏离标准模型的现象,而且这些问题的许多更直接的解决方案似乎并没有像我们想象的那样实现。因此,必须探索所有可能的途径和想法,采用多方面的方法,面对从天体物理学到直接探测到对撞机的所有可用证据的理论期望。因此,IPPP将加大对可以用非对撞机实验回答的科学问题的研究力度。这包括对轻暗物质、轴子、随机引力波谱和非摄动现象的研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Spannowsky其他文献
VBS W±W±H production at the HL-LHC and a 100 TeV pp-collider
- DOI:
https://doi.org/10.1142/S0217751X17501068 - 发表时间:
2017 - 期刊:
- 影响因子:
- 作者:
Christoph Englert;Qiang Li;Michael Spannowsky;Mengmeng Wang;Lei Wang - 通讯作者:
Lei Wang
VBS W±W±H production at the HL-LHC and a 100 TeV pp-collider
HL-LHC 和 100 TeV pp 对撞机上的 VBS W±W±H 生产
- DOI:
10.1142/s0217751x17501068 - 发表时间:
2017-06 - 期刊:
- 影响因子:1.6
- 作者:
Christoph Englert;Qiang Li;Michael Spannowsky;Mengmeng Wang;Lei Wang - 通讯作者:
Lei Wang
Michael Spannowsky的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Spannowsky', 18)}}的其他基金
IPPP (UK National Phenomenology Institute) 2022-2026
IPPP(英国国家现象学研究所)2022-2026
- 批准号:
ST/X003167/1 - 财政年份:2022
- 资助金额:
$ 201.91万 - 项目类别:
Research Grant
相似海外基金
IPPP (UK National Phenomenology Institute) 2022-2026
IPPP(英国国家现象学研究所)2022-2026
- 批准号:
ST/X003167/1 - 财政年份:2022
- 资助金额:
$ 201.91万 - 项目类别:
Research Grant
Proposal for IPPP (UK National Phenomenology Institute), 2020-2023
IPPP(英国国家现象学研究所)提案,2020-2023
- 批准号:
ST/T001011/1 - 财政年份:2020
- 资助金额:
$ 201.91万 - 项目类别:
Research Grant
Wakeham efficiency funds for IPPP
韦克汉姆 IPPP 效率基金
- 批准号:
ST/K001159/1 - 财政年份:2011
- 资助金额:
$ 201.91万 - 项目类别:
Research Grant
CTEQ-IPPP School on QCD Analysis and Phenomenology; St. Andrews, SCOTLAND
CTEQ-IPPP QCD 分析和现象学学院;
- 批准号:
0098750 - 财政年份:2001
- 资助金额:
$ 201.91万 - 项目类别:
Standard Grant














{{item.name}}会员




