Proposal for IPPP (UK National Phenomenology Institute), 2020-2023

IPPP(英国国家现象学研究所)提案,2020-2023

基本信息

  • 批准号:
    ST/T001011/1
  • 负责人:
  • 金额:
    $ 568.36万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2020
  • 资助国家:
    英国
  • 起止时间:
    2020 至 无数据
  • 项目状态:
    未结题

项目摘要

Particle physics research informs us about the nature of matter on very small scales. As we step down the length scales below the length scale of the atom, 10^(-10) meters, and past the length scale of the atomic nucleus, 10^(-15) meters, we enter the realm of particle physics. In this realm there are three well identified interactions. First, the strong interactions, which are responsible for the binding of quarks and gluons to produce protons, neutrons and other particles collectively called hadrons. Second, the electroweak interactions, responsible both for the radiation of photons (light) from matter and the radiation of the carriers of the weak force, the W and Z bosons, discovered at CERN in the 1983. Third, the interactions of the Higgs bosons. The Higgs boson was discovered at CERN in 2012. The interactions of all of these ingredients are controlled by a mathematical structure, known as the Standard Model (SM) gauge theory of electromagnetic, weak and strong interactions. This theory has so far withstood all the challenges posed by various accelerators, of which the latest and most energetic is the LHC. The SM is confirmed - with the unification of electromagnetism and weak interactions proved and tested to one part per mille. Strong interaction effects have been tested to the percent level.The quarks, the ingredients of the hadrons, come in six different types which are referred to as flavours. Flavour phenomena have contributed as much as the gauge principle in shaping the overall structure of the SM and it is the existence of flavours that gives the SM its family and generation structure. In the quark sector the SM description of flavour phenomena and the CKM picture of mixing and CP violation is now verified at the few per cent level. In the lepton sector, the flavours of leptons are the electron, the muon and the tau and their associated neutrinos. The observation of neutrino oscillations, and the consequence that neutrinos have mass, calls for an extension of the SM. Detailed examination of the charged and neutral leptons is of increasing importance.Since 2015, the Large Hadron Collider (LHC) has been accelerating and colliding protons at much higher energies than ever before, close to the design energy of 14 TeV. This higher energy probes much shorter distance scales than ever before. The high energy reach of the LHC will also allow the detailed study of the Higgs boson and exploration of TeV scale physics. However, the LHC experiments are significantly more complex than any previous particle physics experiment. Identifying the nature of physics at the TeV scale will require intense collaborative efforts between experimentalists and theorists. On the theoretical side, high-precision calculations of SM processes are needed to distinguish possible signals of new physics from SM backgrounds. Possible hints of new physics need to be compared with different models of physics beyond the SM in order to disentangle the underlying structure of TeV-scale physics. The IPPP has already established close connections with the UK and international experimental groups and is perfectly placed to help maximise the UK contribution to understanding the LHC data.There is also a strong effort in planning and designing the next generation of particle physics experiments. The IPPP will continue its role in assessing the physics potential and the design of future accelerators. The next decade promises to be pivotal in our understanding of the microscopic world. The IPPP will address fundamental questions about electroweak symmetry breaking, the structure of space-time, flavour physics and CP violation, neutrinos and lepton-flavour violation, and how particle physics connects with astrophysics and cosmology.
粒子物理学的研究告诉我们物质在非常小的尺度上的性质。当我们将长度尺度降低到原子的长度尺度10^(-10)米以下,并超过原子核的长度尺度10^(-15)米时,我们就进入了粒子物理学的领域。在这个领域中,有三个明确的相互作用。首先是强相互作用,它负责夸克和胶子的结合,产生质子、中子和其他统称为强子的粒子。第二,电弱相互作用,负责从物质中辐射光子(光)和弱力载体的辐射,1983年在CERN发现的W和Z玻色子。第三,希格斯玻色子的相互作用。希格斯玻色子于2012年在CERN被发现。所有这些成分的相互作用都由一个数学结构控制,称为电磁、弱相互作用和强相互作用的标准模型(SM)规范理论。到目前为止,这一理论经受住了各种加速器带来的所有挑战,其中最新和最具活力的是LHC。SM被证实-与电磁和弱相互作用的统一证明和测试到千分之一。强相互作用效应已经被测试到百分比水平。夸克,强子的成分,有六种不同的类型,被称为味道。在形成SM的整体结构方面,味道现象和规范原理一样做出了贡献,正是味道的存在赋予了SM家族和生成结构。在夸克部门的SM描述味现象和CKM图片的混合和CP违反现在验证在百分之几的水平。在轻子区,轻子的味道是电子、μ子、τ子和它们的中微子。中微子振荡的观测以及中微子具有质量的结论要求扩展SM。自2015年以来,大型强子对撞机(LHC)一直在以比以往更高的能量加速和碰撞质子,接近14 TeV的设计能量。这种更高的能量探测到的距离尺度比以往任何时候都要短得多。大型强子对撞机的高能量范围也将允许对希格斯玻色子的详细研究和TeV尺度物理的探索。然而,LHC实验比以前的任何粒子物理实验都要复杂得多。在TeV尺度上确定物理学的性质需要实验学家和理论家之间的密切合作。在理论方面,需要对SM过程进行高精度计算,以区分新物理的可能信号与SM背景。新物理学的可能线索需要与SM之外的不同物理模型进行比较,以解开TeV尺度物理学的基本结构。IPPP已经与英国和国际实验团体建立了密切的联系,并完全能够帮助最大限度地提高英国对理解LHC数据的贡献。在规划和设计下一代粒子物理实验方面也有很大的努力。IPPP将继续在评估未来加速器的物理潜力和设计方面发挥作用。下一个十年将是我们理解微观世界的关键。IPPP将解决有关电弱对称性破缺,时空结构,味物理和CP违反,中微子和轻子味违反,以及粒子物理学如何与天体物理学和宇宙学联系的基本问题。

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Ising Machines for Diophantine Problems in Physics
Evolving Heterotic Gauge Backgrounds: Genetic Algorithms versus Reinforcement Learning
  • DOI:
    10.1002/prop.202200034
  • 发表时间:
    2021-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    S. Abel;A. Constantin;T. R. Harvey;A. Lukas
  • 通讯作者:
    S. Abel;A. Constantin;T. R. Harvey;A. Lukas
Calculating the Higgs mass in string theory
计算弦理论中的希格斯质量
  • DOI:
    10.1103/physrevd.104.126032
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    5
  • 作者:
    Abel S
  • 通讯作者:
    Abel S
Quantum optimization of complex systems with a quantum annealer
  • DOI:
    10.1103/physreva.106.042607
  • 发表时间:
    2022-10-10
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Abel, Steve;Blance, Andrew;Spannowsky, Michael
  • 通讯作者:
    Spannowsky, Michael
Dark Energy Survey Year 3 results: Cosmological constraints from galaxy clustering and weak lensing
  • DOI:
    10.1103/physrevd.105.023520
  • 发表时间:
    2022-01-13
  • 期刊:
  • 影响因子:
    5
  • 作者:
    Abbott, T. M. C.;Aguena, M.;Zuntz, J.
  • 通讯作者:
    Zuntz, J.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Richard Keith Ellis其他文献

Seminumerical evaluation of one-loop corrections
单环修正的半数值评估
  • DOI:
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Richard Keith Ellis;W. Giele;Giulia Zanderighi
  • 通讯作者:
    Giulia Zanderighi

Richard Keith Ellis的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Richard Keith Ellis', 18)}}的其他基金

HEPData: the unique publication-related data repository in particle physics
HEPData:粒子物理学领域唯一的与出版物相关的数据存储库
  • 批准号:
    ST/S000720/1
  • 财政年份:
    2019
  • 资助金额:
    $ 568.36万
  • 项目类别:
    Research Grant
Institute for Particle Physics Phenomenology, Oct 2018 - Sept 2020
粒子物理现象学研究所,2018年10月-2020年9月
  • 批准号:
    ST/P001246/1
  • 财政年份:
    2018
  • 资助金额:
    $ 568.36万
  • 项目类别:
    Research Grant
HEPData 2.0: new technologies and services
HEPData 2.0:新技术和服务
  • 批准号:
    ST/N000315/1
  • 财政年份:
    2015
  • 资助金额:
    $ 568.36万
  • 项目类别:
    Research Grant
Institute for Particle Physics Phenomenology
粒子物理现象学研究所
  • 批准号:
    ST/G000905/1
  • 财政年份:
    2008
  • 资助金额:
    $ 568.36万
  • 项目类别:
    Research Grant

相似海外基金

Proposal for IPPP Consolidated Grant (2023-2026)
IPPP 综合赠款提案(2023-2026 年)
  • 批准号:
    ST/X000745/1
  • 财政年份:
    2023
  • 资助金额:
    $ 568.36万
  • 项目类别:
    Research Grant
IPPP (UK National Phenomenology Institute) 2022-2026
IPPP(英国国家现象学研究所)2022-2026
  • 批准号:
    ST/X003167/1
  • 财政年份:
    2022
  • 资助金额:
    $ 568.36万
  • 项目类别:
    Research Grant
Wakeham efficiency funds for IPPP
韦克汉姆 IPPP 效率基金
  • 批准号:
    ST/K001159/1
  • 财政年份:
    2011
  • 资助金额:
    $ 568.36万
  • 项目类别:
    Research Grant
CTEQ-IPPP School on QCD Analysis and Phenomenology; St. Andrews, SCOTLAND
CTEQ-IPPP QCD 分析和现象学学院;
  • 批准号:
    0098750
  • 财政年份:
    2001
  • 资助金额:
    $ 568.36万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了