Very deep sub-micron, entirely digital, position resolution sensors.
非常深的亚微米、全数字位置分辨率传感器。
基本信息
- 批准号:ST/X004724/1
- 负责人:
- 金额:$ 75.52万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2023
- 资助国家:英国
- 起止时间:2023 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The project introduces a novel type of silicon radiation detectors constituted by an entirely digital circuit. This is a total change of design approach with respect to the current, well established architecture of solid state sensors. These have been very successful and are the main tool for many applications in science and technology. One strength of silicon sensors is their position resolution. They have been introduced and developed for tracking charged particles in high energy physics experiment and have gone through the years to a continuous series of improvements. Nonetheless their hit position resolution has not improved for many years. A value of 1 micron was already achieved over 30 years ago, and the current best devices have resolution larger than a few microns. The main reason for the inability of improving the hit location precision on a pixel sensor is the minimum size required by the analogue circuit amplifying the signal released by the ionising radiation, making the minimum pixel dimensions of the order of a few tens of microns. The approach here proposed to realise a breakthrough for the hit resolution performance of silicon sensors consists in designing a sensor based on an entirely digital circuit. The sensing mechanism is binary, with a sensor cell changing state from one to the other of two possible values when ionising radiation is crossing a given pixel (similar to the operation of a solid state digital memory). This digital circuit is comprising a limited number of transistors (from 3 to 10), allowing for a very small pixel footprint. Depending on the feature size of the selected CMOS technology node, a single pixel could be as small as 100x100 nm2, enabling an enhancement of up to two orders of magnitude in resolution when compared to current state-of-the-art. The concept of a digital radiation sensor with the above characteristics has been validated by the proponents of the project, with successful measurements of the charge generated by a pulsed blue laser and alpha particles from a 141 Am radioactive source. The initial measurements on the very first digital sensor prototypes have also indicated the subsequent research steps to improve the detection efficiency performance (number of recorded hits over the total number of crossing ionising particles) of these devices. The results have shown that a very shallow charge collection was achieved with the prototype resulting in a reduced efficiency, limited to hits happening in correspondence of the sensitive transistor gate, rather then over the whole sensor area. This project will correct this inefficiency with dedicated design of the sensitive node and produce very precise resolution pixel sensors with high efficiency over the full ionising radiation spectrum (minimum ionising particles, charged ions, photons). The new sensors would have countless applications. In science, they would revolutionize experiments in nuclear and particle physics, allowing for a large reduction of the tracking volume, with great benefits in terms of the scope and cost of future experiments. The new sensors will also be able to track particle paths shorter than 1 micron inside a single silicon layer, allowing for directional detection of recoiling nuclei or electrons. This would enable their use for detection of elusive Weakly Interactive Massive Particle (WIMP) candidates for Dark Matter. WIMPs can interact with nuclei in the silicon lattice causing these to recoil over distances a few hundred nm. Detecting these short tracks and being able to determine the direction of the incoming particle provides a powerful handle to extract the WIMP signal from otherwise insurmountable neutrino background. These are only examples of the huge scope of these novel devices.
该项目介绍了一种由全数字电路构成的新型硅辐射探测器。这是相对于当前的、良好建立的固态传感器架构的设计方法的完全改变。这些都是非常成功的,是许多科学和技术应用的主要工具。硅传感器的一个优势是它们的位置分辨率。它们被引入和发展用于高能物理实验中跟踪带电粒子,并经过多年的不断改进。尽管如此,他们的命中位置分辨率多年来没有改善。30多年前已经实现了1微米的值,目前最好的设备具有大于几微米的分辨率。不能提高像素传感器上的命中位置精度的主要原因是放大由电离辐射释放的信号的模拟电路所需的最小尺寸,使得最小像素尺寸为几十微米的量级。这里提出的实现硅传感器的命中分辨率性能的突破的方法包括设计基于完全数字电路的传感器。感测机制是二进制的,当电离辐射穿过给定像素时,传感器单元将状态从两个可能值中的一个改变到另一个(类似于固态数字存储器的操作)。该数字电路包括有限数量的晶体管(从3到10),允许非常小的像素占用面积。根据所选CMOS技术节点的特征尺寸,单个像素可以小至100 × 100 nm2,与当前最先进的技术相比,分辨率提高了两个数量级。具有上述特征的数字辐射传感器的概念已经得到了项目支持者的验证,成功测量了脉冲蓝色激光和141 Am放射源的α粒子产生的电荷。对第一个数字传感器原型的初步测量也表明了随后的研究步骤,以提高这些设备的检测效率性能(记录的命中数与交叉电离粒子总数的比值)。结果表明,原型实现了非常浅的电荷收集,导致效率降低,仅限于在敏感晶体管栅极对应处发生的撞击,而不是在整个传感器区域上。该项目将通过敏感节点的专用设计来纠正这种低效率,并在整个电离辐射光谱(最小电离粒子,带电离子,光子)上产生非常精确的分辨率像素传感器。新的传感器将有无数的应用。在科学领域,它们将彻底改变核物理和粒子物理学实验,从而大幅减少跟踪体积,并在未来实验的范围和成本方面带来巨大好处。新的传感器还将能够跟踪单个硅层内小于1微米的粒子路径,从而可以定向检测反冲核或电子。这将使它们能够用于探测暗物质的难以捉摸的弱相互作用大质量粒子(WIMP)候选者。WIMP可以与硅晶格中的原子核相互作用,导致这些原子核在几百nm的距离内反冲。探测到这些短轨道并能够确定入射粒子的方向,为从其他无法克服的中微子背景中提取WIMP信号提供了一个强大的处理方法。这些只是这些新设备的巨大范围的例子。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gianluigi Casse其他文献
Gianluigi Casse的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gianluigi Casse', 18)}}的其他基金
High Resolution Silicon Strip Detectors for portable mass spectrometry
用于便携式质谱分析的高分辨率硅条检测器
- 批准号:
ST/M007243/1 - 财政年份:2015
- 资助金额:
$ 75.52万 - 项目类别:
Research Grant
A NOVEL TISSUE EQUIVALENT PHANTOM FOR HADRON THERAPY
用于强子治疗的新型组织等效模型
- 批准号:
ST/J000698/1 - 财政年份:2012
- 资助金额:
$ 75.52万 - 项目类别:
Research Grant
Development of Radiation-Hard Single-Sided Silicon Pixel Detectors using Planar p-type Technology
使用平面 p 型技术开发抗辐射单面硅像素探测器
- 批准号:
ST/G001472/1 - 财政年份:2008
- 资助金额:
$ 75.52万 - 项目类别:
Research Grant
相似国自然基金
基于深穿透拉曼光谱的安全光照剂量的深层病灶无创检测与深度预测
- 批准号:82372016
- 批准年份:2023
- 资助金额:48.00 万元
- 项目类别:面上项目
GREB1突变介导雌激素受体信号通路导致深部浸润型子宫内膜异位症的分子遗传机制研究
- 批准号:82371652
- 批准年份:2023
- 资助金额:45.00 万元
- 项目类别:面上项目
基于Deep Unrolling的高分辨近红外二区荧光分子断层成像方法研究
- 批准号:12271434
- 批准年份:2022
- 资助金额:46 万元
- 项目类别:面上项目
基于深度森林(Deep Forest)模型的表面增强拉曼光谱分析方法研究
- 批准号:2020A151501709
- 批准年份:2020
- 资助金额:10.0 万元
- 项目类别:省市级项目
面向Deep Web的数据整合关键技术研究
- 批准号:61872168
- 批准年份:2018
- 资助金额:62.0 万元
- 项目类别:面上项目
基于Deep-learning的三江源区冰川监测动态识别技术研究
- 批准号:51769027
- 批准年份:2017
- 资助金额:38.0 万元
- 项目类别:地区科学基金项目
基于异构医学影像数据的深度挖掘技术及中枢神经系统重大疾病的精准预测
- 批准号:61672236
- 批准年份:2016
- 资助金额:64.0 万元
- 项目类别:面上项目
具有时序处理能力的Spiking-Deep Learning(脉冲深度学习)方法研究
- 批准号:61573081
- 批准年份:2015
- 资助金额:64.0 万元
- 项目类别:面上项目
基于语义计算的海量Deep Web知识探索机制研究
- 批准号:61272411
- 批准年份:2012
- 资助金额:80.0 万元
- 项目类别:面上项目
Deep Web数据集成查询结果抽取与整合关键技术研究
- 批准号:61100167
- 批准年份:2011
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Development of a combined Gamma/Positron system for molecular imaging of the human brain at sub-500 micron spatial resolution
开发伽玛/正电子组合系统,用于以亚 500 微米空间分辨率对人脑进行分子成像
- 批准号:
10722205 - 财政年份:2023
- 资助金额:
$ 75.52万 - 项目类别:
Collaborative Research: Tracking nitrogen in mélange matrix from fore-arc to sub-arc depths with implications for deep nitrogen cycling: A combined field and experimental approach
合作研究:追踪从弧前到弧下深度的混合基质中的氮,对深层氮循环的影响:现场和实验相结合的方法
- 批准号:
2350014 - 财政年份:2023
- 资助金额:
$ 75.52万 - 项目类别:
Standard Grant
Collaborative Research: Tracking nitrogen in mélange matrix from fore-arc to sub-arc depths with implications for deep nitrogen cycling: A combined field and experimental approach
合作研究:追踪从弧前到弧下深度的混合基质中的氮,对深层氮循环的影响:现场和实验相结合的方法
- 批准号:
2138410 - 财政年份:2022
- 资助金额:
$ 75.52万 - 项目类别:
Standard Grant
ERI: Sub-diffractive Optical Trapping Enabled by Deep-Learning-Assisted Metasurface Design
ERI:深度学习辅助超表面设计实现次衍射光捕获
- 批准号:
2138869 - 财政年份:2022
- 资助金额:
$ 75.52万 - 项目类别:
Standard Grant
Collaborative Research: Tracking nitrogen in mélange matrix from fore-arc to sub-arc depths with implications for deep nitrogen cycling: A combined field and experimental approach
合作研究:追踪从弧前到弧下深度的混合基质中的氮,对深层氮循环的影响:现场和实验相结合的方法
- 批准号:
2138484 - 财政年份:2022
- 资助金额:
$ 75.52万 - 项目类别:
Standard Grant
IIBR Instrumentation: Sub-micrometer Resolution Mass Spectrometry Imaging by Deep-UV Laser Ablation and Post-ionization
IIBR 仪器:通过深紫外激光烧蚀和后电离进行亚微米分辨率质谱成像
- 批准号:
1951447 - 财政年份:2020
- 资助金额:
$ 75.52万 - 项目类别:
Standard Grant
Characterising urban environments in Sub-Saharan Africa with satellite imagery and unsupervised deep learning
利用卫星图像和无监督深度学习描述撒哈拉以南非洲的城市环境
- 批准号:
2900560 - 财政年份:2019
- 资助金额:
$ 75.52万 - 项目类别:
Studentship
"Utilization of Machine Learning, Deep Learning, and Radiomics for the classification of sub-cm lung nodules in early cancer diagnosis"
“利用机器学习、深度学习和放射组学对早期癌症诊断中的亚厘米肺结节进行分类”
- 批准号:
428870 - 财政年份:2019
- 资助金额:
$ 75.52万 - 项目类别:
Studentship Programs
Deep learning for protein subcellular/sub-organelle localizations and localization motifs
蛋白质亚细胞/亚细胞器定位和定位基序的深度学习
- 批准号:
9768571 - 财政年份:2018
- 资助金额:
$ 75.52万 - 项目类别: