How do biocides interact with bacterial membranes to disinfect?

杀菌剂如何与细菌膜相互作用来消毒?

基本信息

  • 批准号:
    ST/Y000552/1
  • 负责人:
  • 金额:
    $ 6.9万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2023
  • 资助国家:
    英国
  • 起止时间:
    2023 至 无数据
  • 项目状态:
    已结题

项目摘要

The growing Hospital Acquired Infections as well as Covid infections transmitted from contaminated solid surfaces over the past few years have challenged our ability to fight harmful microorganisms effectively. Cationic surfactants (quaternary nitrogen compound or abbreviated as quats) are one of the most widely used disinfectants. Despite their intensive use, little is actually known about how cationic surfactants interact with microbial membranes and kill the pathogens in the presence of other additives, e.g. hard water ions, nonionic surfactants. This situation limits our ability to design and formulate effective disinfectants. Weak or ineffective disinfectants, when used in hard surface cleaning (surgical devices, beds and airing systems and even food and diary processing facilities), could lead to outbreaks that could cost millions and, in some cases, have casualties. A formulated cationic quat disinfectant cleaning product often contains nonionic surfactants to provide cleaning efficacy. Despite decades of research and development, little is known about the role of the nonionics in disinfection. This lack of understanding creates a vacuum when new products are developed. Without this vital information about the interfacial biocidal action of such blends it is difficult to balance the levels of quats in product formulation.Biocidal quat molecules can bind (and usually do) to microbial membranes via strong electrostatic attraction and kill pathogens by structural disruption and membrane leakage. This mode of action is well supported by the rugged or disrupted surfaces of bacteria and fungi viewed from imaging studies such as scanning electron microscopy and confocal microscopy. Membrane disruptions have also been monitored by membrane permeation probes and fluorescence detection, zeta potential measurements and dynamic light scattering using lipid membrane models, such as spread lipid monolayer, supported lipid bilayer and small unilamellar vesicles (SUVs). High consistency to real microbial measurements validates the model membrane approaches. However, current techniques do not have the sensitivity or resolution to structural changes within the membrane which is typically in the region 1-5 nm. Lack of capability to follow structural changes during a biocide binding makes it difficult to distinguish one biocide from another or explore the impacts of different membranes. Neutron reflection (NR) and scattering (SANS) are about the only techniques that offer the insights into the structural changes across lipid membranes upon quat binding, with and without nonionic surfactant. Successful demonstration of the neutron experiments in this exploratory project replies on (a) input of neutron expertise in the running of the neutron experiments, synthesis of the deuterated surfactants and data analysis and interpretation from the ISIS team, (b) the expertise of antimicrobial work and selection of model lipid membranes from the Manchester team and (c) the active participation of Arxada in relating model interfacial studies to real quat formulations. The project teams have worked together to devise the challenging workplan that will be delivered by a highly able PDRA, Dr Mingrui Liao, who has already had prior knowledge of the quat biocides in his current PDRA work and neutron experiments from his PhD research on antimicrobial peptides. Successful outcomes from this project will form a strong basis for the collaborating teams to send joint grant applications to BBSRC and EU to engage in this new area of research by seeking more systematic neutron experiments. The teams will also publish their results in leading international journals such as JACS and Nat Commun.
过去几年,医院获得性感染以及由受污染的固体表面传播的新型冠状病毒感染不断增加,挑战了我们有效对抗有害微生物的能力。阳离子表面活性剂(季氮化合物或简称季铵盐)是应用最广泛的消毒剂之一。尽管它们被广泛使用,但实际上很少有人知道阳离子表面活性剂如何与微生物膜相互作用并在其他添加剂(例如硬水离子,非离子表面活性剂)存在下杀死病原体。这种情况限制了我们设计和配制有效消毒剂的能力。弱或无效的消毒剂,当用于硬表面清洁(手术器械,床和通风系统,甚至食品和乳制品加工设施)时,可能导致爆发,可能造成数百万美元的损失,在某些情况下,造成人员伤亡。配制的阳离子季铵消毒剂清洁产品通常含有非离子表面活性剂以提供清洁功效。尽管经过几十年的研究和开发,人们对非离子表面活性剂在消毒中的作用知之甚少。这种缺乏了解的情况在开发新产品时造成了真空。如果没有这类共混物界面杀菌作用的重要信息,就很难平衡产品配方中季铵化合物的含量。杀菌季铵化合物分子可以通过强大的静电吸引力与微生物膜结合(通常如此),并通过结构破坏和膜泄漏杀死病原体。这种作用模式得到了细菌和真菌粗糙或破裂表面的很好支持,这些表面可以通过扫描电子显微镜和共聚焦显微镜等成像研究观察到。膜破裂也已监测膜渗透探针和荧光检测,zeta电位测量和动态光散射使用脂质膜模型,如扩展脂质单层,支持脂质双层和小单层囊泡(SUV)。与真实的微生物测量的高度一致性验证了模型膜方法。然而,目前的技术对膜内的结构变化不具有灵敏度或分辨率,其通常在1-5 nm的范围内。在杀生物剂结合期间缺乏跟踪结构变化的能力使得难以区分一种杀生物剂与另一种杀生物剂或探索不同膜的影响。中子反射(NR)和散射(SANS)是唯一的技术,提供洞察跨脂质膜的结构变化后,季结合,有和没有非离子表面活性剂。这一探索性项目中子实验的成功演示对以下方面作出了答复:(a)在中子实验的运行、氘代表面活性剂的合成以及ISIS团队的数据分析和解释方面提供了中子专门知识,(B)曼彻斯特团队的抗菌工作和模型脂质膜选择的专业知识,以及(c)Arxada积极参与将模型界面研究与真实的季铵化合物配方联系起来。项目团队共同设计了具有挑战性的工作计划,该计划将由一位非常有能力的PDRA廖明锐博士提供,他在目前的PDRA工作和中子实验中已经了解了季铵生物杀灭剂的知识,他在抗菌肽方面的博士研究。该项目的成功成果将为合作团队向BBSRC和欧盟提交联合资助申请奠定坚实的基础,以便通过寻求更系统的中子实验来参与这一新的研究领域。研究小组还将在JACS和Nat Commun等国际领先期刊上发表他们的研究结果。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jian Lu其他文献

Mirror-image calibrator for resonant perturbation method in surface resistance measurements of high Tc superconducting thin films
高 Tc 超导薄膜表面电阻测量中谐振微扰法的镜像校准器
  • DOI:
    10.1063/1.1149893
  • 发表时间:
    1999
  • 期刊:
  • 影响因子:
    1.6
  • 作者:
    C. Ong;Linfeng Chen;Jian Lu;S. Xu;X. Rao;B. Tan
  • 通讯作者:
    B. Tan
Determination of laser‐induced plasma temperature
激光诱导等离子体温度的测定
  • DOI:
    10.1002/(sici)1098-2760(20000520)25:4<231::aid-mop1>3.0.co;2-0
  • 发表时间:
    2000
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Z. Shen;Bao;X. Ni;Jian Lu;Shu
  • 通讯作者:
    Shu
Phase-dependent double optomechanically induced transparency in a hybrid optomechanical cavity system with coherently mechanical driving
具有相干机械驱动的混合光机腔系统中的相位相关双光机诱导透明度
  • DOI:
    10.1088/1674-1056/28/7/074204
  • 发表时间:
    2018-12
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shi-Chao Wu;Li-Guo Qin;Jian Lu;Zhong-Yang Wang
  • 通讯作者:
    Zhong-Yang Wang
Selective oxidation of arylalkanes with N-Graphitic-Modified cobalt nanoparticles in water
N-石墨改性钴纳米粒子在水中选择性氧化芳基烷烃
  • DOI:
    10.1016/j.catcom.2017.04.038
  • 发表时间:
    2017-07
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Dong-Huai Tu;Yang Li;Jiangwei Li;Yu-Jie Gu;Bo Wang;Zhao-Tie Liu;Zhong-Wen Liu;Jian Lu
  • 通讯作者:
    Jian Lu
Fully discretized Sobolev gradient flow for the Gross-Pitaevskii eigenvalue problem
Gross-Pitaevskii 特征值问题的完全离散 Sobolev 梯度流
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ziang Chen;Jian Lu;Yulong Lu;Xiangxiong Zhang
  • 通讯作者:
    Xiangxiong Zhang

Jian Lu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jian Lu', 18)}}的其他基金

MAb Adsorption and Solution Stability Workshop 2022
MAb 吸附和溶液稳定性研讨会 2022
  • 批准号:
    BB/W018616/1
  • 财政年份:
    2022
  • 资助金额:
    $ 6.9万
  • 项目类别:
    Research Grant
Structural changes of interfacially adsorbed antibody molecules
界面吸附抗体分子的结构变化
  • 批准号:
    BB/S018492/1
  • 财政年份:
    2020
  • 资助金额:
    $ 6.9万
  • 项目类别:
    Research Grant
Film Bulk Acoustic Resonator-based Ultra-Sensitive Biosensor Array Using Low Cost Piezoelectric Polymer as the Active Material
使用低成本压电聚合物作为活性材料的基于薄膜体声谐振器的超灵敏生物传感器阵列
  • 批准号:
    EP/F062966/1
  • 财政年份:
    2009
  • 资助金额:
    $ 6.9万
  • 项目类别:
    Research Grant
Novel Functional Nanocomposite Engineering of Stents
新型功能性纳米复合材料支架工程
  • 批准号:
    EP/D064945/1
  • 财政年份:
    2006
  • 资助金额:
    $ 6.9万
  • 项目类别:
    Research Grant
A multi-user evanescent wave biosensor for real time measurement of protein adsorption
用于实时测量蛋白质吸附的多用户倏逝波生物传感器
  • 批准号:
    BB/C511048/1
  • 财政年份:
    2006
  • 资助金额:
    $ 6.9万
  • 项目类别:
    Research Grant

相似国自然基金

复合菌剂在高DO下的好氧反硝化脱氮机制及工艺调控研究
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
内生真菌DO14多糖PPF30调控铁皮石斛葡甘聚糖生物合成的机制
  • 批准号:
    LZ23H280001
  • 批准年份:
    2023
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于捕获“Do not eat me”信号的肺癌异质性分子功能可视化及机理研究
  • 批准号:
    92259102
  • 批准年份:
    2022
  • 资助金额:
    60.00 万元
  • 项目类别:
    重大研究计划
基于达文波特星形酵母Do18强化发酵的糟带鱼生物胺生物调控机制
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于PO-DGT原理的沉积物微界面pH-DO-磷-重金属的精细化同步成像技术研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
CD38/cADPR信号通路异常促逼尿肌过度活动(DO)发生的分子机制及干预措施研究
  • 批准号:
    81770762
  • 批准年份:
    2017
  • 资助金额:
    56.0 万元
  • 项目类别:
    面上项目
USP2介导RagA去泛素化稳定肿瘤细胞“Do not eat me”信号的机制研究
  • 批准号:
    81773040
  • 批准年份:
    2017
  • 资助金额:
    62.0 万元
  • 项目类别:
    面上项目
抑制骨细胞来源Sclerostin蛋白对颌面部DO成骨的协同促进作用
  • 批准号:
    81771104
  • 批准年份:
    2017
  • 资助金额:
    56.0 万元
  • 项目类别:
    面上项目
内生真菌DO14促铁皮石斛多糖成分积累的作用机制
  • 批准号:
    31600259
  • 批准年份:
    2016
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
末次冰期东亚季风DO事件的定年、转型及亚旋回研究
  • 批准号:
    40702026
  • 批准年份:
    2007
  • 资助金额:
    19.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Renewal application: How do ecological trade-offs drive ectomycorrhizal fungal community assembly? Fine- scale processes with large-scale implications
更新应用:生态权衡如何驱动外生菌根真菌群落组装?
  • 批准号:
    MR/Y011503/1
  • 财政年份:
    2025
  • 资助金额:
    $ 6.9万
  • 项目类别:
    Fellowship
The Politics of Financial Citizenship - How Do Middle Class Expectations Shape Financial Policy and Politics in Emerging Market Democracies?
金融公民政治——中产阶级的期望如何影响新兴市场民主国家的金融政策和政治?
  • 批准号:
    EP/Z000610/1
  • 财政年份:
    2024
  • 资助金额:
    $ 6.9万
  • 项目类别:
    Research Grant
How do healthy brains drive a healthy economy? A novel occupational neuroscience approach
健康的大脑如何推动健康的经济?
  • 批准号:
    MR/X034100/1
  • 财政年份:
    2024
  • 资助金额:
    $ 6.9万
  • 项目类别:
    Fellowship
Collaborative Research: How do plants control sperm nuclear migration for successful fertilization?
合作研究:植物如何控制精子核迁移以成功受精?
  • 批准号:
    2334517
  • 财政年份:
    2024
  • 资助金额:
    $ 6.9万
  • 项目类别:
    Standard Grant
Doctoral Dissertation Research: Do social environments influence the timing of male maturation in a close human relative?
博士论文研究:社会环境是否影响人类近亲的男性成熟时间?
  • 批准号:
    2341354
  • 财政年份:
    2024
  • 资助金额:
    $ 6.9万
  • 项目类别:
    Standard Grant
Do fine-scale water column structure and particle aggregations favor gelatinous-dominated food webs in subtropical continental shelf environments?
细尺度水柱结构和颗粒聚集是否有利于亚热带大陆架环境中以凝胶状为主的食物网?
  • 批准号:
    2244690
  • 财政年份:
    2024
  • 资助金额:
    $ 6.9万
  • 项目类别:
    Standard Grant
Do root microbiomes control seagrass response to environmental stress?
根部微生物组是否控制海草对环境压力的反应?
  • 批准号:
    DP240100566
  • 财政年份:
    2024
  • 资助金额:
    $ 6.9万
  • 项目类别:
    Discovery Projects
Do autoantibodies to aberrantly glycosylated MUC1 drive extra-articular rheumatoid arthritis, and can GSK assets prevent driver antigen formation?
针对异常糖基化 MUC1 的自身抗体是否会导致关节外类风湿性关节炎,GSK 资产能否阻止驱动抗原形成?
  • 批准号:
    MR/Y022947/1
  • 财政年份:
    2024
  • 资助金额:
    $ 6.9万
  • 项目类别:
    Research Grant
Do oxidative breaks accumulate at gene regulatory regions in disease?
疾病中的基因调控区域是否会积累氧化断裂?
  • 批准号:
    MR/Y000021/1
  • 财政年份:
    2024
  • 资助金额:
    $ 6.9万
  • 项目类别:
    Research Grant
Why Do Breeders Tolerate Non-breeders In Animal Societies?
为什么动物社会中的饲养者容忍非饲养者?
  • 批准号:
    2333286
  • 财政年份:
    2024
  • 资助金额:
    $ 6.9万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了