COMPUTER SIMULATION THEORY OF GLOBULAR PROTEIN DYNAMICS
球状蛋白质动力学的计算机模拟理论
基本信息
- 批准号:6385656
- 负责人:
- 金额:$ 20.75万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:1986
- 资助国家:美国
- 起止时间:1986-12-01 至 2002-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
One of the most important unsolved problems of computational biology is the inability to predict the three-dimensional structure of a protein from its amino acid sequence. In practice, the solution to the protein folding problem demands that two interrelated problems be simultaneously addressed. Potentials that recognize the native state from the myriad of misfolded conformations partly surmounting both problems. A means of secondary and tertiary restraint information to funnel the molecule towards native-like regions. However, such approaches typically generate two to three low energy topologies. Thus, we propose to develop improved protocols to predict secondary structure and tertiary restraints from multiple sequence information. Furthermore, since native state topology generation and section is also crucially dependent on the non-restraint, empirical contributions to the potential, these terms must also be improved. In particular, side chain burial will be more adequately described and local sequence alignments will be employed to develop much more sensitive pair potentials. Furthermore, once low energy topologies are generated, self-consistent tertiary restraints will be derived so that less distorted native-like conformations will be generated. This should enhance the energetic selectivity for native-like as well as by developing computationally more efficient reduced protein sampling techniques as well as by developing computationally more efficient reduced protein models. To establish the range of validity of this approach to tertiary structure prediction, application will be made to large number of sequences of known as well as unknown structure. Significant, independent testing of this algorithm will be done by participating in blind prediction, contests, including CASP3, by making blind predictions of other proteins, and by disseminating all software to other investigators over the Internet.
计算生物学最重要的未解决问题之一是无法从氨基酸序列预测蛋白质的三维结构。在实践中,蛋白质折叠问题的解决方案需要同时解决两个相互关联的问题。从无数错误折叠的构象中识别天然状态的潜力部分克服了这两个问题。二级和三级约束信息的手段,以漏斗分子向天然样区域。然而,这样的方法通常产生两到三个低能量拓扑。因此,我们建议开发改进的协议来预测二级结构和三级限制从多个序列信息。此外,由于原生状态拓扑生成和截面也关键地依赖于对势的非约束、经验贡献,因此这些项也必须改进。特别是,侧链掩埋将得到更充分的描述和本地序列比对将开发更敏感的对电位。此外,一旦产生低能量拓扑结构,自洽的三级约束将被导出,从而产生较少扭曲的天然样构象。这应该通过开发计算上更有效的简化蛋白质采样技术以及开发计算上更有效的简化蛋白质模型来增强对天然样蛋白的能量选择性。为了建立这种方法的有效性范围的三级结构预测,应用程序将作出大量的序列已知以及未知的结构。该算法的重要独立测试将通过参与盲预测、竞赛(包括CASP3)、对其他蛋白质进行盲预测以及通过互联网向其他研究者传播所有软件来完成。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JEFFREY SKOLNICK其他文献
JEFFREY SKOLNICK的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JEFFREY SKOLNICK', 18)}}的其他基金
Purchase of a GPU cluster for deep learning applications in protein-protein interaction and supercomplex prediction and biochemical literature annotation.
购买 GPU 集群,用于蛋白质-蛋白质相互作用、超复杂预测和生化文献注释中的深度学习应用。
- 批准号:
10797550 - 财政年份:2016
- 资助金额:
$ 20.75万 - 项目类别:
Interplay of inherent promiscuity and specificity in protein biochemical function with applications to drug discovery and exome analysis
蛋白质生化功能固有的混杂性和特异性与药物发现和外显子组分析应用的相互作用
- 批准号:
10399478 - 财政年份:2016
- 资助金额:
$ 20.75万 - 项目类别:
Interplay of inherent promiscuity and specificity in protein biochemical function with applications to drug discovery and exome analysis
蛋白质生化功能固有的混杂性和特异性与药物发现和外显子组分析应用的相互作用
- 批准号:
9926899 - 财政年份:2016
- 资助金额:
$ 20.75万 - 项目类别:
Interplay of inherent promiscuity and specificity in protein biochemical function with applications to drug discovery and exome analysis
蛋白质生化功能固有的混杂性和特异性与药物发现和外显子组分析应用的相互作用
- 批准号:
9270553 - 财政年份:2016
- 资助金额:
$ 20.75万 - 项目类别:
Interplay of inherent promiscuity and specificity in protein biochemical function with applications to drug discovery and exome analysis
蛋白质生化功能固有的混杂性和特异性与药物发现和外显子组分析应用的相互作用
- 批准号:
10613959 - 财政年份:2016
- 资助金额:
$ 20.75万 - 项目类别:
A Computational Metabolomics tool (CoMet) for cancer metabolism
用于癌症代谢的计算代谢组学工具 (CoMet)
- 批准号:
8474727 - 财政年份:2012
- 资助金额:
$ 20.75万 - 项目类别:
A Computational Metabolomics tool (CoMet) for cancer metabolism
用于癌症代谢的计算代谢组学工具 (CoMet)
- 批准号:
8285272 - 财政年份:2012
- 资助金额:
$ 20.75万 - 项目类别:
MULTIRESOLUTION SAMPLING METHODS FOR PROTEIN & PEPTIDE CONFORMATIONAL SPACE
蛋白质多分辨率采样方法
- 批准号:
7957342 - 财政年份:2009
- 资助金额:
$ 20.75万 - 项目类别:
REFINEMENT OF PREDICTED LOW-RESOLUTION PROTEIN MODELS TO HIGH-RESOLUTION ALL-AT
将预测的低分辨率蛋白质模型细化为高分辨率 All-AT
- 批准号:
7723173 - 财政年份:2008
- 资助金额:
$ 20.75万 - 项目类别:
REFINEMENT OF PREDICTED LOW-RESOLUTION PROTEIN MODELS TO HIGH-RESOLUTION ALL-AT
将预测的低分辨率蛋白质模型细化为高分辨率 All-AT
- 批准号:
7601397 - 财政年份:2007
- 资助金额:
$ 20.75万 - 项目类别:
相似海外基金
Towards more complete models and improved computer simulation tools for Liquid Composite Molding (LCM)
为液体复合成型 (LCM) 打造更完整的模型和改进的计算机模拟工具
- 批准号:
RGPIN-2022-04495 - 财政年份:2022
- 资助金额:
$ 20.75万 - 项目类别:
Discovery Grants Program - Individual
Computer simulation of yeast metabolism by data-driven ensemble modeling
通过数据驱动的集成建模对酵母代谢进行计算机模拟
- 批准号:
22H01879 - 财政年份:2022
- 资助金额:
$ 20.75万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Computer simulation studies of crystallization in structured ternary fluids
结构三元流体结晶的计算机模拟研究
- 批准号:
2717178 - 财政年份:2022
- 资助金额:
$ 20.75万 - 项目类别:
Studentship
Computer simulation of confined polymers and 2D catenated-ring networks
受限聚合物和二维链环网络的计算机模拟
- 批准号:
RGPIN-2022-03086 - 财政年份:2022
- 资助金额:
$ 20.75万 - 项目类别:
Discovery Grants Program - Individual
A computer simulation study to unveil fluid behavior of the beam-on target of a fusion neutron source
揭示聚变中子源射束目标流体行为的计算机模拟研究
- 批准号:
22K03579 - 财政年份:2022
- 资助金额:
$ 20.75万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Improving cardiac valve implant outcomes with advanced computer simulation
通过先进的计算机模拟改善心脏瓣膜植入效果
- 批准号:
nhmrc : 2002892 - 财政年份:2021
- 资助金额:
$ 20.75万 - 项目类别:
Ideas Grants
Aggregation process of amyloid-beta peptides on a membrane on a lipid membrane studied by computer simulation
计算机模拟研究淀粉样β肽在脂膜上的聚集过程
- 批准号:
21K06040 - 财政年份:2021
- 资助金额:
$ 20.75万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Computer simulation of cell polarization and migration in 3D
3D 细胞极化和迁移的计算机模拟
- 批准号:
563522-2021 - 财政年份:2021
- 资助金额:
$ 20.75万 - 项目类别:
University Undergraduate Student Research Awards
Computer Simulation of a Semiflexible Polymer Confined to a Dual-Nanocavity Geometry
限制在双纳米腔几何结构中的半柔性聚合物的计算机模拟
- 批准号:
563544-2021 - 财政年份:2021
- 资助金额:
$ 20.75万 - 项目类别:
University Undergraduate Student Research Awards
Diversity Research Supplement for Combining Experiments and Computer Simulation to Improve the Stem Cell Differentiation Process
结合实验和计算机模拟改善干细胞分化过程的多样性研究补充
- 批准号:
10550022 - 财政年份:2021
- 资助金额:
$ 20.75万 - 项目类别:














{{item.name}}会员




