Mental Health Service Use by HIV+ Persons Nationally

全国艾滋病毒感染者使用心理健康服务的情况

基本信息

项目摘要

DESCRIPTION (provided by applicant): Nearly half of HIV-infected persons in the U. S. have and 70% need mental health care. However, no one has comprehensively examined mental health service utilization, service intensity received, or satisfaction with care among HIV-positive persons nationally. National studies of HIV-positive persons have only simply examined predictors of mental health utilization and of type of service provider utilized. This study applies Andersen?s Behavioral Model of Health Services Use (BMHS) to examine individual, facility/provider, and environmental predictors among a cross-sectional, nationally representative sample of HIV-positive adults. These adults were in regular medical care for HIV and either perceived a need for mental health care or met criteria for psychiatric diagnoses (n=l046). The BMHS is a widely used multi-level framework of health service utilization with three levels of factors: environmental, provider/facility, and individual. The BMHS will be applied in a novel manner by specifying which level of factors has the greater effect on four outcomes: Individual-level factors are hypothesized to explain more variance than provider/facility-or environmental-level factors in models predicting receiving any mental health service and predicting clients? satisfaction with the provider used. Provider/facility-level factors are hypothesized to explain more variance than the other two levels of factors in models predicting receiving and intensity of: mental health visits, psychiatric hospitalizations, and psychopharmacological medications. Individual predictors will be estimated for each outcome. AHRQ data used in this dissertation are from the HIV Cost and Services Utilization Study (HCSUS) conducted in 1996-1997. This is the first survey to randomly select and interview a nationally representative sample of adults in medical care for HIV. Multivariate regressions will test hypotheses, and hierarchical linear analysis will be used to determine predictors at the three nested levels of data. If these hypotheses are correct, applying the principle demonstrated in this study will maximize the utility of Andersen?s model. In addition, this multi-level approach to the examination of service utilization will be an improvement over single-level approaches and will aid in the design of multi-level based interventions. Most of these national-level findings will be the first.
描述(由申请人提供): 联合S. 70%的人需要心理健康护理。然而,没有人 综合考察了精神卫生服务利用、服务强度 全国艾滋病毒抗体阳性者对护理的满意度。 对艾滋病毒阳性者的国家研究只是简单地检查了预测因素 心理健康利用率和所利用的服务提供者类型。这 研究适用安德森?的卫生服务使用行为模型(BMHS), 检查个人,设施/供应商,和环境预测之间的 具有全国代表性的艾滋病毒阳性成年人样本。 这些成年人都在定期接受艾滋病毒的医疗护理, 精神卫生保健或符合精神病诊断标准(n= 1046)。的 BMHS是一个广泛使用的多层次卫生服务利用框架, 三个层次的因素:环境,供应商/设施,和个人。的 BMHS将以一种新颖的方式应用,具体说明哪一级因素 对四个结果有较大的影响:个人层面的因素是 假设解释了比提供者/设施或环境级别更多的差异 预测接受任何心理健康服务的模型中的因素, 预测客户?对使用的供应商满意。供应商/设施一级 假设因子比其他两个因子解释更多的方差 模型中预测接受和强度的因素水平:心理 健康访问、精神病住院和精神药理学 药物治疗将估计每个结局的个体预测因素。 本文所使用的AHRQ数据来自艾滋病毒成本和服务 1996-1997年进行的使用情况研究。这是第一次调查, 随机选择并采访了一个具有全国代表性的成年人样本, 艾滋病的治疗。多元回归将检验假设, 分层线性分析将用于确定三个方面的预测因素 嵌套的数据级别。如果这些假设是正确的,那么运用 证明在这项研究将最大限度地利用安徒生?的模型。在 此外,这种多层次的服务利用率检查方法 将是对单级方法的改进,并将有助于设计 多层次的干预措施。大多数国家级的调查结果将 成为第一个。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

STEPHANIE L TAYLOR其他文献

STEPHANIE L TAYLOR的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('STEPHANIE L TAYLOR', 18)}}的其他基金

HSR&D Research Career Scientist Award
高铁
  • 批准号:
    10699417
  • 财政年份:
    2023
  • 资助金额:
    $ 2.1万
  • 项目类别:
Complementary and Integrative Health for Pain in the VA: A National Demonstration Project
退伍军人管理局疼痛的补充和综合健康:国家示范项目
  • 批准号:
    10186550
  • 财政年份:
    2018
  • 资助金额:
    $ 2.1万
  • 项目类别:
Complementary and Integrative Health for Pain in the VA: A National Demonstration Project
退伍军人管理局疼痛的补充和综合健康:国家示范项目
  • 批准号:
    9696673
  • 财政年份:
    2018
  • 资助金额:
    $ 2.1万
  • 项目类别:
Complementary and Integrative Health Evaluation Center (CIHEC)
补充综合健康评估中心 (CIHEC)
  • 批准号:
    9395218
  • 财政年份:
    2017
  • 资助金额:
    $ 2.1万
  • 项目类别:
The Cost Effectiveness of Complementary and Alternative Treatments to Reduce Pain
减少疼痛的补充和替代治疗的成本效益
  • 批准号:
    8755209
  • 财政年份:
    2014
  • 资助金额:
    $ 2.1万
  • 项目类别:
DETERMINANTS OF SELF MEDICATION BEHAVIOR IN THE ELDERLY
老年人自我药疗行为的决定因素
  • 批准号:
    2055291
  • 财政年份:
    1995
  • 资助金额:
    $ 2.1万
  • 项目类别:

相似海外基金

Construction of a learning support system through learning behavior prediction using student modeling
使用学生建模通过学习行为预测构建学习支持系统
  • 批准号:
    23K17604
  • 财政年份:
    2023
  • 资助金额:
    $ 2.1万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Development of Service Process Measurement System based on Behavior Prediction in Nursing-care Service
基于行为预测的护理服务过程测量系统开发
  • 批准号:
    22K12286
  • 财政年份:
    2022
  • 资助金额:
    $ 2.1万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Collaborative Research: IMR: MM-1C: Privacy-preserving IoT Analytics and Behavior Prediction on Network Edge
合作研究:IMR:MM-1C:网络边缘上的隐私保护物联网分析和行为预测
  • 批准号:
    2219866
  • 财政年份:
    2022
  • 资助金额:
    $ 2.1万
  • 项目类别:
    Standard Grant
Collaborative Research: IMR: MM-1C: Privacy-preserving IoT Analytics and Behavior Prediction on Network Edge
合作研究:IMR:MM-1C:网络边缘上的隐私保护物联网分析和行为预测
  • 批准号:
    2219867
  • 财政年份:
    2022
  • 资助金额:
    $ 2.1万
  • 项目类别:
    Standard Grant
Object State Change Detection and Human Behavior Prediction Focused on Hand Manipulation
专注于手部操作的物体状态变化检测和人类行为预测
  • 批准号:
    21J11626
  • 财政年份:
    2021
  • 资助金额:
    $ 2.1万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Collaborative Research: RI: Medium: Learning Joint Crowd-Space Embeddings for Cross-Modal Crowd Behavior Prediction
合作研究:RI:Medium:学习联合人群空间嵌入以进行跨模式人群行为预测
  • 批准号:
    1955365
  • 财政年份:
    2020
  • 资助金额:
    $ 2.1万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Medium: Learning Joint Crowd-Space Embeddings for Cross-Modal Crowd Behavior Prediction
合作研究:RI:Medium:学习联合人群空间嵌入以进行跨模式人群行为预测
  • 批准号:
    1955404
  • 财政年份:
    2020
  • 资助金额:
    $ 2.1万
  • 项目类别:
    Standard Grant
Behavior Prediction of Traffic Participants based on Micro and Macro features for Urban Automated Driving
城市自动驾驶基于微观和宏观特征的交通参与者行为预测
  • 批准号:
    20K04397
  • 财政年份:
    2020
  • 资助金额:
    $ 2.1万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
CAREER: Towards Fatigue Behavior Prediction of Structural Materials through Computationally-Informed Textural and Microstructural Characteristics
职业:通过计算信息的纹理和微观结构特征预测结构材料的疲劳行为
  • 批准号:
    1751591
  • 财政年份:
    2018
  • 资助金额:
    $ 2.1万
  • 项目类别:
    Standard Grant
Research on Behavior Prediction of Cylindrical Line Structure with Rotation in Flow
流动中旋转圆柱线结构行为预测研究
  • 批准号:
    18H01634
  • 财政年份:
    2018
  • 资助金额:
    $ 2.1万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了