G2 Compactifications: Higgs bundles, Geometry and Phenomenological Implications
G2 紧化:希格斯丛、几何和现象学含义
基本信息
- 批准号:1668516
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2015
- 资助国家:英国
- 起止时间:2015 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The goal of this project is to study particle phenomenological implications of string theory compactifications. In particular we will consider compactifications of M-theory on G2 manifolds. The initial step is to understand the so-called local model in terms of a Higgs bundle on an associative three-cycle in G2. This will already give us insight into the possible low energy physics. One important technical advance will be the analysis of non-abelian gauge configurations in this setup. In the second part of the project these local models are lifted to compact G2 manifolds, and aspects of moduli stabilization, supersymmetry breaking and the resulting four dimensional particle physics will be analyzed. This is of particular relevance in view of the LHC, which in a few years time will provide more insights into physics beyond the Standard Model.
该项目的目标是研究弦理论紧化的粒子现象学含义。特别是,我们将考虑 M 理论在 G2 流形上的紧化。第一步是根据 G2 中关联三周期上的希格斯丛来理解所谓的局部模型。这已经让我们深入了解可能的低能物理。一项重要的技术进步将是在此设置中对非阿贝尔规范配置的分析。在该项目的第二部分中,这些局部模型被提升为紧致 G2 流形,并对模稳定、超对称破缺以及由此产生的四维粒子物理等方面进行分析。这对于大型强子对撞机来说尤其重要,几年后大型强子对撞机将提供标准模型之外的更多物理学见解。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似海外基金
LEAPS-MPS: Describing Compactifications of Moduli Spaces of Varieties and Pairs.
LEAPS-MPS:描述簇和对模空间的紧化。
- 批准号:
2316749 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Generalized dualities and compactifications in string theory
弦理论中的广义对偶性和紧化
- 批准号:
23K03391 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
String Compactifications: From Geometry to Effective Field Theory
弦紧化:从几何到有效场论
- 批准号:
2310588 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Compactifications of the Sublinearly Morse Boundary
次线性莫尔斯边界的紧化
- 批准号:
577694-2022 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Canadian Graduate Scholarships Foreign Study Supplements
String Compactifications: From Geometry to Effective Field Theory
弦紧化:从几何到有效场论
- 批准号:
2014086 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Standard Grant
Zero-dimensional semigroup compactifications of locally compact groups
局部紧群的零维半群紧化
- 批准号:
539121-2019 - 财政年份:2019
- 资助金额:
-- - 项目类别:
University Undergraduate Student Research Awards
String Compactifications on Calabi-Yau and SU(3) Structure Manifolds
Calabi-Yau 和 SU(3) 结构流形上的弦紧化
- 批准号:
2114192 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Studentship
Compactifications and Local-to-Global Structure for Bruhat-Tits Buildings
Bruhat-Tits 建筑的紧凑化和局部到全局结构
- 批准号:
336349957 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Priority Programmes
String Compactifications: From Geometry To Effective Field Theory
弦紧化:从几何到有效场论
- 批准号:
1720321 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Standard Grant
Compactifications of Mumford-Tate domains and log geometry
Mumford-Tate 域和对数几何的紧化
- 批准号:
16K05093 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)