String Compactifications: From Geometry To Effective Field Theory

弦紧化:从几何到有效场论

基本信息

项目摘要

This award funds the research activities of Professors Lara Anderson, James Gray, and Eric Sharpe at Virginia Tech.In string theory --- a proposal for a fundamental theory of quantum gravity --- the roles of physics and geometry are intrinsically intertwined. While the questions that string theory attempts to answer are physical, the path to those answers frequently leads to cutting-edge challenges in modern mathematics. This award will fund a collaborative program of research to explore the physics that arises from string compactifications. The goals of this work include strengthening the links between string theory and current progress in particle physics by developing new foundational tools for the subject of string phenomenology. In addition, Professors Anderson, Gray and Sharpe aim to further bound and characterize the geometries arising in string compactifications. Experience shows that when strong physical requirements are expressed in the language of geometry, they can open the door to new and unexpected results in both physics and mathematics. As a result, research in this area advances the national interest by promoting the progress of basic science. Professors Anderson, Gray and Sharpe will involve junior scientists in this project, including a postdoctoral researcher and several graduate students who will take part in the collaborative research. Their efforts will include the organizing of conferences and workshops that will increase dialog between physicists and mathematicians on pressing problems at the boundary of both fields. In all of these aspects of student training and professional dialog, Professors Anderson, Sharpe and Gray are committed to actively encouraging the inclusion of under-represented groups into the frontline of progress in the sciences. More specifically, the PIs will study two of the most flexible frameworks for four-dimensional compactifications of string theory: Heterotic string theory and F-theory. Within heterotic string theory, novel descriptions of the physical and geometric moduli spaces will be used to compute previously undetermined aspects of the effective theory, including the N=1 matter field Kahler potential and physically normalized Yukawa couplings. The nonperturbative contributions to Yukawa couplings will also be computed via quantum sheaf cohomology, a generalization of ordinary quantum cohomology. This work will explore new dualities including (0,2) mirror symmetry, as well as the global structure of the moduli space of SCFT's. Within F-theory, new results in the geometry of elliptic fibrations will be used to study the properties of singular Calabi-Yau manifolds and their links to Hitchin systems, as well as to study the implications of the ubiquity of multiply fibered manifolds for string dualities and effective theories. Recent progress in geometry will be used to extract new features of the effective theories describing F-theory compactifications, including the explicit four-dimensional field-dependent form of flux contributions to the superpotential.
该奖项资助弗吉尼亚理工大学的劳拉安德森、詹姆斯格雷和埃里克夏普教授的研究活动。在弦理论中-一个量子引力基本理论的建议-物理学和几何学的角色本质上是交织在一起的。虽然弦理论试图回答的问题是物理问题,但通往这些答案的道路经常导致现代数学的前沿挑战。该奖项将资助一项合作研究计划,以探索弦紧化产生的物理学。这项工作的目标包括加强弦理论和粒子物理学的当前进展之间的联系,通过开发弦现象学的新的基础工具。此外,安德森教授、格雷教授和夏普教授的目标是进一步限制和描述弦紧化中产生的几何形状。经验表明,当强烈的物理要求用几何语言表达时,它们可以为物理学和数学中的新的和意想不到的结果打开大门。 因此,这一领域的研究通过促进基础科学的进步来促进国家利益。 教授安德森,格雷和夏普将涉及初级科学家在这个项目中,包括博士后研究员和几个研究生谁将参加合作研究。他们的努力将包括组织会议和研讨会,以增加物理学家和数学家之间就两个领域边界上的紧迫问题进行对话。在学生培训和专业对话的所有这些方面,教授安德森,夏普和格雷致力于积极鼓励代表性不足的群体纳入科学进步的前沿。更具体地说,PI将研究弦理论的四维紧化的两个最灵活的框架:杂合弦理论和F理论。在杂化弦理论中,物理和几何模空间的新描述将被用来计算有效理论中以前未确定的方面,包括N=1物质场Kahler势和物理归一化的Yukawa耦合。非微扰对汤川耦合的贡献也将通过量子层上同调来计算,量子层上同调是普通量子上同调的推广。这项工作将探索新的对偶,包括(0,2)镜像对称,以及全球结构的模空间的SCFT的。在F理论中,椭圆纤维化几何的新结果将用于研究奇异卡-丘流形的性质及其与希钦系统的联系,以及研究多纤维流形的普遍存在对弦对偶和有效理论的影响。几何学的最新进展将被用来提取描述F理论紧致化的有效理论的新特征,包括对超势的通量贡献的明确的四维场依赖形式。

项目成果

期刊论文数量(30)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
(0,2) versions of exotic (2,2) GLSMs
奇异 (2,2) GLSM 的 (0,2) 版本
GLSM realizations of maps and intersections of Grassmannians and Pfaffians
Grassmannians 和 Pfaffians 的地图和交集的 GLSM 实现
  • DOI:
    10.1007/jhep04(2018)119
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    5.4
  • 作者:
    Căldăraru, Andrei;Knapp, Johanna;Sharpe, Eric
  • 通讯作者:
    Sharpe, Eric
A proposal for nonabelian $(0,2)$ mirrors
非阿贝尔 $(0,2)$ 镜子的提案
Landau–Ginzburg models for certain fiber products with curves
某些带有曲线的纤维产品的 Landau-Ginzburg 模型
  • DOI:
    10.1016/j.geomphys.2018.11.012
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    1.5
  • 作者:
    Chen, Zhuo;Pantev, Tony;Sharpe, Eric
  • 通讯作者:
    Sharpe, Eric
GLSMs for exotic Grassmannians
  • DOI:
    10.1007/jhep10(2020)200
  • 发表时间:
    2020-08
  • 期刊:
  • 影响因子:
    5.4
  • 作者:
    W. Gu;E. Sharpe;H. Zou
  • 通讯作者:
    W. Gu;E. Sharpe;H. Zou
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Lara Anderson其他文献

Across Time, Space, and Matter
跨越时间、空间和物质
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    H. R. Song;R. Earle;Melissa Fuster;Lara Anderson;Jordana Mendelson
  • 通讯作者:
    Jordana Mendelson
Christoph Meiners’ <em>History of the Female Sex</em> (1788–1800): The orientalisation of Spain and German nationalism
  • DOI:
    10.1016/j.histeuroideas.2009.07.001
  • 发表时间:
    2009-12-01
  • 期刊:
  • 影响因子:
  • 作者:
    Lara Anderson;Heather Merle Benbow
  • 通讯作者:
    Heather Merle Benbow
Writing from and for the Periphery
来自外围并为外围写作
A scoping review to determine themes that represent perceptions of self as mother (‘ideal mother’ vs ‘real mother’)
范围审查以确定代表自我作为母亲的看法的主题(“理想母亲”与“真正的母亲”)
Patients from residential aged care with hip fractures—Does discharge destination from acute care affect outcomes?
来自住院老年护理中心的髋部骨折患者——急性护理的出院目的地是否会影响结果?
  • DOI:
    10.1111/ajag.12824
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    1.6
  • 作者:
    Lara Anderson;Chris Moran;S. Liew;L. Kimmel
  • 通讯作者:
    L. Kimmel

Lara Anderson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Lara Anderson', 18)}}的其他基金

String Compactifications: From Geometry to Effective Field Theory
弦紧化:从几何到有效场论
  • 批准号:
    2310588
  • 财政年份:
    2023
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
A Symposium on Challenges at the Interface of String Phenomenology and Geometry
弦现象学与几何学接口挑战研讨会
  • 批准号:
    1733639
  • 财政年份:
    2017
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
A Three-Workshop Series on the Mathematics and Physics of F-theory
F 理论数学和物理三期研讨会系列
  • 批准号:
    1603247
  • 财政年份:
    2016
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
String Phenomenology and Geometry
弦现象学与几何
  • 批准号:
    1417337
  • 财政年份:
    2014
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
GRADUATE RESEARCH FELLOWSHIPS
研究生研究奖学金
  • 批准号:
    0435775
  • 财政年份:
    2004
  • 资助金额:
    $ 60万
  • 项目类别:
    Fellowship Award

相似海外基金

String Compactifications: From Geometry to Effective Field Theory
弦紧化:从几何到有效场论
  • 批准号:
    2310588
  • 财政年份:
    2023
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
String Compactifications: From Geometry to Effective Field Theory
弦紧化:从几何到有效场论
  • 批准号:
    2014086
  • 财政年份:
    2020
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Compactifications of Mumford-Tate domains and log geometry
Mumford-Tate 域和对数几何的紧化
  • 批准号:
    16K05093
  • 财政年份:
    2016
  • 资助金额:
    $ 60万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
G2 Compactifications: Higgs bundles, Geometry and Phenomenological Implications
G2 紧化:希格斯丛、几何和现象学含义
  • 批准号:
    1668516
  • 财政年份:
    2015
  • 资助金额:
    $ 60万
  • 项目类别:
    Studentship
Research in Geometry, String Compactifications, and Mathematical String Theory
几何、弦紧化和数学弦理论研究
  • 批准号:
    1417410
  • 财政年份:
    2014
  • 资助金额:
    $ 60万
  • 项目类别:
    Continuing Grant
Geometry and Physics of String Compactifications
弦紧化的几何和物理
  • 批准号:
    1217109
  • 财政年份:
    2012
  • 资助金额:
    $ 60万
  • 项目类别:
    Continuing Grant
Research in Geometry, String Compactifications, and Mathematical String Theory.
几何、弦紧化和数学弦理论研究。
  • 批准号:
    1068725
  • 财政年份:
    2011
  • 资助金额:
    $ 60万
  • 项目类别:
    Continuing Grant
Compactifications of moduli spaces of abelian varieties and log geometry
阿贝尔簇模空间的紧化和对数几何
  • 批准号:
    22540011
  • 财政年份:
    2010
  • 资助金额:
    $ 60万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Phenomenology and Geometry in Heterotic String Compactifications
异质弦紧化中的现象学和几何
  • 批准号:
    EP/G051054/1
  • 财政年份:
    2009
  • 资助金额:
    $ 60万
  • 项目类别:
    Fellowship
Coarse geometry and compactifications that are metric-dependent, with relation to Novikov conjecture
与诺维科夫猜想相关的度量相关的粗略几何和紧致化
  • 批准号:
    19540108
  • 财政年份:
    2007
  • 资助金额:
    $ 60万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了