String Compactifications: From Geometry to Effective Field Theory
弦紧化:从几何到有效场论
基本信息
- 批准号:2014086
- 负责人:
- 金额:$ 70.2万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This award funds the research activities of Professors Lara Anderson, James Gray, and Eric Sharpe at Virginia Tech.String theory is a proposed framework of physics that encompasses both quantum mechanics (the theory describing the behavior of subatomic particles) and gravity (the force dictating the large-scale behavior of the Universe). In string theory, physics and the mathematical subject of geometry are intrinsically intertwined. While the questions that string theory attempts to answer are physical, the path to those answers frequently involves cutting-edge challenges in modern mathematics. This award will fund a collaborative program of research to explore the physics that arises from studying aspects of string theory. The goals of this work include developing new foundational tools for the subject of string phenomenology, which is the attempt to extract the observable consequences of string theory for experimental physics. As part of their research, Professors Anderson, Gray, and Sharpe aim to further bound and characterize the types of geometrical shapes that arise in string theory. Experience shows that when strong physical requirements are expressed in geometrical terms, they can open the door to new and unexpected results in both physics and mathematics. As a result, research in this area advances the national interest by promoting the progress of basic science. Professors Anderson, Gray, and Sharpe will involve junior scientists in this project, including a postdoctoral researcher and several graduate students who will take part in the collaborative research. Their efforts will also include the organizing of conferences and workshops that will increase dialog between physicists and mathematicians on pressing problems at the boundary of both fields, all while actively encouraging the inclusion of under-represented groups into the frontline of progress in the sciences.More specifically, two of the most flexible frameworks for four-dimensional compactifications of string theory --- namely heterotic string theory and F-theory --- will be investigated. Within heterotic string theory, novel geometric tools will be used to compute previously undetermined aspects of the effective theory. These include the N=1 matter field Kahler potential, physically normalized Yukawa couplings, and vacuum values of the perturbative superpotential. The non-perturbative contributions to Yukawa couplings will also be computed via quantum sheaf cohomology, a generalization of ordinary quantum cohomology. Within F-theory, new results in the geometry of elliptic fibrations will be used to study the properties of singular Calabi-Yau manifolds and their links to Hitchin systems, as well as to study the implications of the ubiquity of multiply fibered manifolds for string dualities, effective theories, and possible boundedness of the set of smooth Calabi-Yau varieties. Recent progress in heterotic/F-theory duality will be used to extract new features of the effective theories describing F-theory compactifications, including the explicit four-dimensional field-dependent form of flux contributions to the superpotential. Finally, Professors Anderson, Gray, and Sharpe will also apply some of their recent insights into the global structure of moduli spaces of SCFTs to study possible swampland conjectures.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项资助弗吉尼亚理工大学的劳拉·安德森、詹姆斯·格雷和埃里克·夏普教授的研究活动。弦理论是一个拟议的物理学框架,包括量子力学(描述亚原子粒子行为的理论)和重力(决定宇宙大规模行为的力)。在弦理论中,物理和几何的数学主题本质上是相互交织的。虽然弦理论试图回答的问题是物理问题,但通向这些答案的道路往往涉及现代数学中的前沿挑战。这一奖项将资助一个合作研究计划,以探索从研究弦理论的各个方面产生的物理学。这项工作的目标包括为弦现象学这一学科开发新的基础工具,这是为实验物理提取弦理论的可观察结果的尝试。作为他们研究的一部分,安德森、格雷和夏普教授的目标是进一步界定和描述弦理论中出现的几何形状的类型。经验表明,当强烈的物理要求用几何术语表示时,它们可以为物理和数学方面的新的和意想不到的结果打开大门。因此,这一领域的研究通过促进基础科学的进步来促进国家利益。安德森、格雷和夏普教授将让初级科学家参与这个项目,其中包括一名博士后研究员和几名将参与合作研究的研究生。他们的努力还将包括组织会议和研讨会,增加物理学家和数学家之间关于这两个领域边界紧迫问题的对话,同时积极鼓励将未被充分代表的群体纳入科学进步的前沿。更具体地说,将研究弦理论四维压缩的两个最灵活的框架--即杂化弦理论和F理论。在杂交弦理论中,新的几何工具将被用来计算以前不确定的有效理论的方面。其中包括N=1的物质场Kahler势、物理归一化汤川耦合和微扰超势的真空值。汤川耦合的非微扰贡献也将通过量子束上同调来计算,量子束上同调是普通量子上同调的推广。在F-理论中,椭圆纤颤几何的新结果将被用来研究奇异Calabi-Yau流形的性质及其与Hitchin系统的联系,以及研究多重纤维流形的无处不在对弦对偶、有效理论以及光滑Calabi-Yau变元集的可能有界性的含义。杂化/F理论对偶性的最新进展将被用来提取描述F理论压缩的有效理论的新特征,包括显式四维场相关形式的通量对超势的贡献。最后,安德森、格雷和夏普教授还将应用他们对SCFT模空间的全局结构的一些最新见解来研究可能的沼泽猜想。这一奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(17)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Vanishing Yukawa Couplings and the Geometry of String Theory Models
消失的汤川耦合和弦理论模型的几何
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Anderson, Lara B.;Gray, James;Larfors, Magdalena;Magill, Matthew
- 通讯作者:Magill, Matthew
Orbifolds by 2-groups and decomposition
2 群 Orbifolds 和分解
- DOI:10.1007/jhep09(2022)036
- 发表时间:2022
- 期刊:
- 影响因子:5.4
- 作者:Pantev, Tony;Robbins, Daniel G.;Sharpe, Eric;Vandermeulen, Thomas
- 通讯作者:Vandermeulen, Thomas
Decomposition in Chern–Simons theories in three dimensions
陈-西蒙斯理论的三维分解
- DOI:10.1142/s0217751x2250227x
- 发表时间:2022
- 期刊:
- 影响因子:1.6
- 作者:Pantev, Tony;Sharpe, Eric
- 通讯作者:Sharpe, Eric
Decomposition, Condensation Defects, and Fusion
- DOI:10.1002/prop.202200130
- 发表时间:2022-08
- 期刊:
- 影响因子:0
- 作者:Ling Lin;D. Robbins;E. Sharpe
- 通讯作者:Ling Lin;D. Robbins;E. Sharpe
A generalization of decomposition in orbifolds
- DOI:10.1007/jhep10(2021)134
- 发表时间:2021-01
- 期刊:
- 影响因子:5.4
- 作者:D. Robbins;E. Sharpe;T. Vandermeulen
- 通讯作者:D. Robbins;E. Sharpe;T. Vandermeulen
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
James Gray其他文献
Lesbian mothers and their children: A comparison with solo parent heterosexual mothers and their children
女同性恋母亲和她们的孩子:与单亲异性恋母亲和孩子的比较
- DOI:
10.1007/bf01542224 - 发表时间:
1986 - 期刊:
- 影响因子:3.8
- 作者:
Richard Green;J. Mandel;M. Hotvedt;James Gray;Laurel A. Smith - 通讯作者:
Laurel A. Smith
Physiologic and biochemical evaluation of infants with idiopathic respiratory distress syndrome
- DOI:
10.1016/s0022-3476(63)80289-9 - 发表时间:
1963-10-01 - 期刊:
- 影响因子:1.9
- 作者:
Mildred Stahlman;William C. Young;Gabe A. Payne;James Gray;Amos Christie - 通讯作者:
Amos Christie
A multi-institutional Phase II trial for Cesium-131 permanent prostate brachytherapy
- DOI:
10.1016/j.brachy.2006.03.013 - 发表时间:
2006-04-01 - 期刊:
- 影响因子:
- 作者:
Bradley Prestidge;William Bice;Ines Jurkovic;Brian Moran;Donald Fuller;James Gray;David Beyer;Steven Kurtzman;John Sylvester;Amir Sadeghi - 通讯作者:
Amir Sadeghi
Appropriation: The role of progressing and focusing actions
拨款:进步和集中行动的作用
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
James Gray;I. Solem;A. H. Bjerke - 通讯作者:
A. H. Bjerke
Post COVID-19 Vaccine and Autoimmune Hepatitis
- DOI:
10.1016/j.jceh.2023.07.084 - 发表时间:
2023-01-01 - 期刊:
- 影响因子:
- 作者:
Abdullah Mubarak;Sai Priya Metla;Fatima Mahanoor;James Gray - 通讯作者:
James Gray
James Gray的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('James Gray', 18)}}的其他基金
String Theory, Geometry and Particle Physics
弦理论、几何和粒子物理
- 批准号:
1417316 - 财政年份:2014
- 资助金额:
$ 70.2万 - 项目类别:
Standard Grant
Effects of the Selective Removal of Cottonwood Trees Along The Platte River
选择性清除普拉特河沿岸三叶杨树的影响
- 批准号:
7509168 - 财政年份:1975
- 资助金额:
$ 70.2万 - 项目类别:
Standard Grant
相似海外基金
String Compactifications: From Geometry to Effective Field Theory
弦紧化:从几何到有效场论
- 批准号:
2310588 - 财政年份:2023
- 资助金额:
$ 70.2万 - 项目类别:
Standard Grant
String Compactifications: From Geometry To Effective Field Theory
弦紧化:从几何到有效场论
- 批准号:
1720321 - 财政年份:2017
- 资助金额:
$ 70.2万 - 项目类别:
Standard Grant
Compactifications of Mumford-Tate domains and log geometry
Mumford-Tate 域和对数几何的紧化
- 批准号:
16K05093 - 财政年份:2016
- 资助金额:
$ 70.2万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
G2 Compactifications: Higgs bundles, Geometry and Phenomenological Implications
G2 紧化:希格斯丛、几何和现象学含义
- 批准号:
1668516 - 财政年份:2015
- 资助金额:
$ 70.2万 - 项目类别:
Studentship
Research in Geometry, String Compactifications, and Mathematical String Theory
几何、弦紧化和数学弦理论研究
- 批准号:
1417410 - 财政年份:2014
- 资助金额:
$ 70.2万 - 项目类别:
Continuing Grant
Geometry and Physics of String Compactifications
弦紧化的几何和物理
- 批准号:
1217109 - 财政年份:2012
- 资助金额:
$ 70.2万 - 项目类别:
Continuing Grant
Research in Geometry, String Compactifications, and Mathematical String Theory.
几何、弦紧化和数学弦理论研究。
- 批准号:
1068725 - 财政年份:2011
- 资助金额:
$ 70.2万 - 项目类别:
Continuing Grant
Compactifications of moduli spaces of abelian varieties and log geometry
阿贝尔簇模空间的紧化和对数几何
- 批准号:
22540011 - 财政年份:2010
- 资助金额:
$ 70.2万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Phenomenology and Geometry in Heterotic String Compactifications
异质弦紧化中的现象学和几何
- 批准号:
EP/G051054/1 - 财政年份:2009
- 资助金额:
$ 70.2万 - 项目类别:
Fellowship
Coarse geometry and compactifications that are metric-dependent, with relation to Novikov conjecture
与诺维科夫猜想相关的度量相关的粗略几何和紧致化
- 批准号:
19540108 - 财政年份:2007
- 资助金额:
$ 70.2万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




