Brane Universality Classes in non-Minimal String Theory
非最小弦理论中的膜普遍性类
基本信息
- 批准号:1734476
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2016
- 资助国家:英国
- 起止时间:2016 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In this work non-minimal strings are defined through the world sheet picture to be Liouville gravity plus matter content which is non-minimal conformal. By contrast with minimal strings, whose boundary states - equivalently branes - have been thoroughly studied there are many unanswered questions when the matter has an extended algebra and there are extra conserved currents in the bulk system. Typically it appears that branes are classified by whether or not these extra currents are conserved at the boundary (ie by the brane) - of course the stress-tensor itself is always conserved to keep the particle content massless. Those branes that have the same current conservation structure are known in some cases to exhibit Seiberg-Shih equivalence (SSE). In work with previous STFC funded graduate student, Ben Niedner, we established that in the simplest case of a single extra current (the matter is essentially the critical point excitations of a Q=3 Potts model) there is a natural holomorphic structure which underlies the SSE and that this structure exists regardless of regularisation (it was constructed explicitly in terms of the planar random graph and spin-system formulation of Liouville gravity coupled to matter).In this project we will do two things. Firstly we will explore the boundary renormalization flows in the previously established holomorphic structure perturbed by the appropriate operators and examine whether the behaviour is consistent with the boundary c-theorem. This involves extending the calculations that lead to the holomorphic structure to include the perturbations which essentially take the form of generalised boundary magnetic fields. It is not clear whether these flows between fixed points sustain the holomorphic structure, although recent work on the simplest case suggests that they do. The second phase of the project will explore whether the holomorphic structure generalises to other cases of an extended system of conserved currents. Essentially we are investigating whether the possible sets of SSEs can be regarded as being classified by the possible holomorphic structures. Clearly to establish this in more generality would be a very clean way of understanding the relationships between the possible boundary states of these systems.
本文通过世界片图定义了非最小弦为刘维尔引力加物质含量,它是非最小共形的。与最小弦相比,它的边界状态--等价于膜--已经得到了彻底的研究,当物质具有扩展的代数并且在体系统中有额外的守恒流时,还有许多问题没有回答。典型的情况是,膜是根据这些额外的电流在边界(即膜)是否守恒来分类的--当然,应力张量本身总是守恒的,以保持粒子内容无质量。那些具有相同的当前守恒结构的膜在某些情况下表现出Seiberg-Shih等价(SSE)。在与以前的STFC资助的研究生,本Niedner,我们已经确定,在最简单的情况下,(问题本质上是一个Q=3波茨模型的临界点激发)有一个自然的全纯结构,它是SSE的基础,这个结构存在,不管正则化(它是根据平面随机图和耦合到物质的刘维尔引力的自旋系统公式明确构造的)。首先,我们将探讨边界重整化流在以前建立的全纯结构扰动适当的运营商和检查是否符合边界c定理的行为。这涉及到扩展的计算,导致全纯结构,包括基本上采取广义边界磁场的形式的扰动。目前还不清楚这些固定点之间的流动是否维持全纯结构,尽管最近对最简单情况的研究表明它们是这样的。该项目的第二阶段将探讨全纯结构是否推广到守恒流扩展系统的其他情况。从本质上讲,我们正在研究是否可以被视为是由可能的全纯结构分类的可能的SSE集。显然,更普遍地建立这一点,将是理解这些系统的可能边界状态之间关系的一种非常清晰的方式。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似海外基金
Random-field effects in spin models: Supersymmetry, criticality, and universality
自旋模型中的随机场效应:超对称性、临界性和普遍性
- 批准号:
EP/X026116/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
Universality of determinantal point processes and analysis of random phenomena
行列式点过程的普遍性和随机现象的分析
- 批准号:
23H01077 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
NSF-BSF: Universality Puzzles and Coherent Control of Efimov Physics with 7Li Atoms
NSF-BSF:7Li 原子 Efimov 物理的普遍性难题和相干控制
- 批准号:
2308791 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Elucidation of the universality and regulatory factors of megacomplex formation for modulating light-harvesting properties in photosystems
阐明用于调节光系统中光捕获特性的巨型复合物形成的普遍性和调节因素
- 批准号:
23K14216 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
Role and universality of large-scale flow structures in maximum drag-reducing flows of surfactant solutions
大规模流动结构在表面活性剂溶液最大减阻流动中的作用和普遍性
- 批准号:
23H01342 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
The Kardar-Parisi-Zhang (KPZ) Universality of Random Growing Interfaces
随机增长界面的 Kardar-Parisi-Zhang (KPZ) 普遍性
- 批准号:
2321493 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Universality Investigation of Subcritical Turbulent Transition in Wall-bounded Shear Flow and Development of Stochastic Model for Engineering Application
壁面剪切流中亚临界湍流转变的普遍性研究及工程应用随机模型的发展
- 批准号:
22KJ2814 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for JSPS Fellows
Kardar-Parisi-Zhang universality for large scale interacting systems
大规模交互系统的 Kardar-Parisi-Zhang 通用性
- 批准号:
22KJ0874 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for JSPS Fellows
Exploring the effectiveness and universality of acoustic features of phonemes using logarithmic duration
使用对数持续时间探索音素声学特征的有效性和普遍性
- 批准号:
23H00628 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
Test of lepton flavour universality at the NA62 experiment at CERN
CERN NA62 实验中的轻子风味通用性测试
- 批准号:
2895514 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Studentship














{{item.name}}会员




