Exploring Energy and Charge Transport Mechanisms in Natural Light Harvesting and DNA
探索自然光采集和 DNA 中的能量和电荷传输机制
基本信息
- 批准号:1794656
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2016
- 资助国家:英国
- 起止时间:2016 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Photosynthetic organisms harness energy from sunlight to power most biological activity on Earth. Photosynthetic organisms harness energy from sunlight to power most biological activity on Earth. Inside chloroplasts of plants, sunlight is absorbed by billions of chlorophyll molecules and used to drive photosynthesis; carbon dioxide and water are converted into simple sugars essential for plant growth. This remarkable natural process regularly achieves 100% efficiency: every photon absorbed is converted into chemical energy. Our efforts to harness solar energy with man-made photovoltaic (PV) technology to generate electricity have, to date, been far less effective. To meet the ever-growing global energy demands, it is imperative for our society to develop renewable and more efficient PV devices that can take full advantage of the abundant solar flux. As well as benefits, sunlight harbours threats: the ultraviolet (UV) component of sunlight is potentially very harmful for life on Earth. Deoxyribonucleic acid (DNA) is the source code for all living organisms on our planet. If DNA absorbs the UV light, potentially deleterious photochemical reactions can be initiated, such as ejection of an electron or bond breaking. As well as benefits, sunlight harbours threats: the ultraviolet (UV) component of sunlight is potentially very harmful for life on Earth. Deoxyribonucleic acid (DNA) is the source code for all living organisms on our planet. If DNA absorbs the UV light, potentially deleterious photochemical reactions can be initiated, such as ejection of an electron or bond breaking. These can lead to destruction of our genetic code and cancerous mutations.By understanding the routes and timescales of energy flow between molecules in these tightly packed multi-chromophore systems, we will seek to gain a fundamental understanding on the molecular level of the mechanisms that underpin energy transport and charge-separation. These insights will provide a greater fundamental understanding of natural light harvesting or the intrinsic photoprotection/photodamage pathways in DNA.This project will use state of the art ultrafast laser spectroscopies such as two-dimensional electronic-vibrational spectroscopy and 2D electronic spectroscopy, to follow create a map of energy/charge flow between molecules with femtosecond time resolution (1 fs = one millionth billionth of a second) in natural light harvesting proteins and model DNA systems.
光合生物利用阳光能量为地球上大多数生物活动提供动力。光合生物利用阳光能量为地球上大多数生物活动提供动力。在植物的叶绿体内,阳光被数十亿叶绿素分子吸收,用于驱动光合作用;二氧化碳和水被转化为植物生长所必需的单糖。这一非凡的自然过程经常达到100%的效率:吸收的每一个光子都转化为化学能。迄今为止,我们利用人造光伏技术利用太阳能发电的努力远没有那么有效。为了满足不断增长的全球能源需求,我们的社会必须开发可再生和更高效的光伏设备,以充分利用丰富的太阳能通量。除了好处,阳光也有威胁:阳光中的紫外线(UV)成分对地球上的生命可能非常有害。脱氧核糖核酸(DNA)是地球上所有生物的源代码。如果DNA吸收紫外线,可能会引发潜在的有害光化学反应,如电子喷射或键断裂。除了好处,阳光也有威胁:阳光中的紫外线(UV)成分对地球上的生命可能非常有害。脱氧核糖核酸(DNA)是地球上所有生物的源代码。如果DNA吸收紫外线,可能会引发潜在的有害光化学反应,如电子喷射或键断裂。通过了解这些紧密堆积的多发色团系统中分子之间能量流动的路线和时间尺度,我们将寻求在分子水平上对支撑能量传输和电荷分离的机制的基本理解。这些见解将提供对自然光捕获或DNA中固有的光保护/光损伤途径的更基本的理解。该项目将使用最先进的超快激光光谱学,如二维电子振动光谱学和二维电子光谱学,创建具有飞秒时间分辨率的分子之间的能量/电荷流图(1 fs =百万分之十亿分之一秒)在自然光捕获蛋白质和模型DNA系统。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似国自然基金
度量测度空间上基于狄氏型和p-energy型的热核理论研究
- 批准号:QN25A010015
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
NSF-BSF: Ultrafast Laser-Electron Heating for Tailoring the Emittance and Charge of High-Energy Proton Beams
NSF-BSF:超快激光电子加热用于调整高能质子束的发射率和电荷
- 批准号:
2308860 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Charge and Energy Transfer Processes at Inorganic-Organic Interfaces
无机-有机界面的电荷和能量转移过程
- 批准号:
DE230100382 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Discovery Early Career Researcher Award
Improvement of efficiency of light-energy conversion devices by introducing metal complexes and charge transport layers
通过引入金属配合物和电荷传输层提高光能转换器件的效率
- 批准号:
23K04908 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
CAS: Harvesting Electrons From Lower Energy Excited States to Extend Spectral Coverage and Facilitate Multiple Charge Collection Following Singlet Fission on Metal Oxides
CAS:从较低能量激发态收集电子以扩展光谱覆盖范围并促进金属氧化物上单线态裂变后的多重电荷收集
- 批准号:
2247164 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Uncovering Energy and Charge Transport Mechanisms in Organic-Inorganic Hybrid Perovskite Quantum Wells with Nonlinear Action Spectroscopies
利用非线性作用光谱揭示有机-无机杂化钙钛矿量子阱中的能量和电荷传输机制
- 批准号:
2154791 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
Charge and energy transport in disordered functional materials
无序功能材料中的电荷和能量传输
- 批准号:
DP220103584 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Projects
Charge-Free Electrostatic MEMS Vibration Energy Harvester for Sensor/LSI Integration
用于传感器/LSI 集成的无电荷静电 MEMS 振动能量收集器
- 批准号:
22H01929 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
EAGER: CRYO: Engineering Charge and Energy Transfer in Superconducting Tunnel Junctions to Achieve Solid-State Refrigeration to Sub-Kelvin Temperatures
EAGER:CRYO:超导隧道结中的工程电荷和能量转移以实现亚开尔文温度的固态制冷
- 批准号:
2232201 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
Photo-induced charge and energy transport: from single molecules to disordered materials
光诱导电荷和能量传输:从单分子到无序材料
- 批准号:
RGPIN-2017-05119 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Sensitizing low-energy light with organic charge-transfer complexes bearing modifiable states of matter: towards liquefied metal-free TTA-UC system
用具有可改变物质状态的有机电荷转移复合物敏化低能光:走向液化无金属TTA-UC系统
- 批准号:
21K05244 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




