Engineering synthetic pathways to bio-ethylene production in Cyanobacteria sp.

蓝藻细菌生产生物乙烯的工程合成途径。

基本信息

  • 批准号:
    1797253
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Studentship
  • 财政年份:
    2016
  • 资助国家:
    英国
  • 起止时间:
    2016 至 无数据
  • 项目状态:
    已结题

项目摘要

Background: Ethylene is currently produced from the stream cracking of ethane which produces large quantities of CO2, contributing to global warming. In 2000, steam cracking had a primary energy use of 3 billion Gigajoules and accounted for approximately 200 million tons of CO2 emissions. Ethylene is the monomer for the most common plastic, polyethylene, and annual global production is approximately 80 million tons. Finding a sustainable or carbon neutral alternative to ethylene production is imperative. Cyanobacteria are Gram-negative photosynthetic prokaryotes. Researchers have previously attempted to produce ethylene from CO2 through heterologous expression of the efe gene in the cyanobacteria, Synechococcus elongates sp. PCC 7942 and Synechocystis sp. PCC 6803, with mixed results. Aim: The aim of this project is to engineer cyanobacteria as a platform for the production of hydrocarbon-based products such as ethylene. Expression of the efe gene encoding the ethylene-forming enzyme from Pseudomonas syringae pv. Phaseolicola in Synechocystis sp. PCC 6803, led to continuous ethylene production. We are now in the process of improving production through directed evolution and metabolic engineering. As part of this process we would like to engineer a synthetic pathway for ethylene production utilising the Yang pathway from plants. This provides an exciting opportunity to implement a novel pathway in cyanobacteria and link ethylene production to growth. Ethylene is efficiently biosynthesized from 1-aminocyclopropane-1-carboxylic acid (ACC) (Zhou et al., 2002), which is itself derived from methionine as a branch of the Yang cycle (Wang et al., 2002). This process is energetically efficient as it preserves the high-energy methionine thioether bond. This pathway utilises SAM synthetase, ACC synthase and ACC oxidase. The conversion of 1-amino-cyclopropane-1-carboxylic acid (ACC) to ethylene releases cyanoformic acid, which spontaneously decarboxylates to release hydrogen cyanide, which is principally detoxified by the CAS pathway (Machingura et al., 2016). The implementation of this pathway will provide a mechanism for detoxifying cyanide in cyanobacteria. Training: The project will allow for training in a unique multidisciplinary environment, incorporating genomic engineering, gas fermentation, synthetic biology, cutting edge molecular biology and systems biology modelling. The project will providing the student with a vast array of transferable skills, highly prized by employers in the growing bio-economy. The project will also provide several high impact publications. This translational project will be carried out within the BBSRC/EPSRC Synthetic Biology Research Centre (SBRC) at Nottingham which comprises 70+ graduate and postdoctoral researchers (www.clostron.com/people.php) and a current budget of £27M.
背景:乙烯目前是由乙烷的蒸汽裂解产生的,其产生大量的CO2,导致全球变暖。2000年,蒸汽裂解的一次能源使用量为30亿千兆焦耳,排放了约2亿吨二氧化碳。乙烯是最常见的塑料聚乙烯的单体,全球年产量约为8000万吨。找到一种可持续的或碳中和的乙烯生产替代品势在必行。蓝细菌是革兰氏阴性光合原核生物。研究人员以前曾试图通过在蓝细菌,细长聚球藻属PCC 7942和集胞藻属PCC 6803中异源表达efe基因来从CO2中产生乙烯,结果好坏参半。目的:该项目的目的是将蓝细菌作为生产乙烯等碳氢化合物产品的平台。大肠杆菌乙烯形成酶基因的表达。Phaseolicola在集胞藻PCC 6803中引起乙烯的连续产生。我们现在正在通过定向进化和代谢工程来提高产量。作为该过程的一部分,我们希望利用植物的Yang途径设计乙烯生产的合成途径。这提供了一个令人兴奋的机会,实施一个新的途径,蓝藻和链接乙烯生产的增长。乙烯由1-氨基环丙烷-1-羧酸(ACC)有效地生物合成(Zhou等人,2002),其本身衍生自作为杨循环分支的甲硫氨酸(Wang et al.,2002年)。该过程在能量上是有效的,因为它保留了高能甲硫氨酸硫醚键。该途径利用SAM合成酶、ACC合成酶和ACC氧化酶。1-氨基-环丙烷-1-羧酸(ACC)转化为乙烯释放氰基甲酸,氰基甲酸自发地脱羧以释放氰化氢,氰化氢主要通过CAS途径解毒(Machingura等人,2016年)。这一途径的实施将提供一个机制,解毒蓝藻氰化物。培训内容:该项目将允许在一个独特的多学科环境中进行培训,包括基因组工程,气体发酵,合成生物学,尖端分子生物学和系统生物学建模。该项目将为学生提供大量的可转移技能,在不断增长的生物经济中受到雇主的高度重视。该项目还将提供若干影响力大的出版物。该翻译项目将在诺丁汉的BBSRC/EPSRC合成生物学研究中心(SBRC)内进行,该中心由70多名研究生和博士后研究人员组成(www.clostron.com/people.php),目前的预算为2700万英镑。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
生命分子工学・海洋生命工学研究室
生物分子工程/海洋生物技术实验室
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    --
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship

相似国自然基金

近空间飞行器载MIMO SAR高分辨率、宽测绘带遥感成像机理与方法
  • 批准号:
    41101317
  • 批准年份:
    2011
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
基于大机动运动平台的特定目标多极化成像与匹配技术研究
  • 批准号:
    11176022
  • 批准年份:
    2011
  • 资助金额:
    46.0 万元
  • 项目类别:
    联合基金项目

相似海外基金

Engineering biological signaling pathways using synthetic cells (SIGSYNCELL)
使用合成细胞工程生物信号通路 (SIGSYNCELL)
  • 批准号:
    EP/Y031326/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Enzyme engineering to protect unstable metabolic intermediates in synthetic pathways
酶工程保护合成途径中不稳定的代谢中间体
  • 批准号:
    24K17829
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
SIGSYNCELL: Engineering biological signaling pathways using synthetic cells
SIGSYNCELL:使用合成细胞工程生物信号通路
  • 批准号:
    EP/Y032675/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Value chain optimization for the industrial deployment of novel photochemical synthetic pathways
新型光化学合成途径产业部署的价值链优化
  • 批准号:
    2896293
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Studentship
Detecting cell to cell contacts in zebrafish with a synthetic receptor methodology
使用合成受体方法检测斑马鱼的细胞与细胞接触
  • 批准号:
    10645331
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
A visible machine learning system to discover targeted treatment solutions in cancer
可见的机器学习系统,用于发现癌症的靶向治疗解决方案
  • 批准号:
    10784808
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Synthetic biology tools for just-in-time control of biosynthetic pathways
用于及时控制生物合成途径的合成生物学工具
  • 批准号:
    DP230103107
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Discovery Projects
Defining the role of CDK6 and DNA repair pathways in tumorigenesis and identify CDK4/6-dependent synthetic lethal vulnerabilities in triple negative breast cancer.
定义 CDK6 和 DNA 修复途径在肿瘤发生中的作用,并确定三阴性乳腺癌中依赖于 CDK4/6 的合成致死漏洞。
  • 批准号:
    461405
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Operating Grants
An integrative approach for biotechnological production of next-generation anticancer agents
下一代抗癌药物生物技术生产的综合方法
  • 批准号:
    463073
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Operating Grants
Understanding epigenetic regulation and modulation of cell stress responses by the cholesterol transporter, scavenger receptor-B1 as a novel target for treating advanced prostate cancer
了解胆固醇转运蛋白、清道夫受体 B1 对细胞应激反应的表观遗传调控和调节作为治疗晚期前列腺癌的新靶点
  • 批准号:
    469855
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Operating Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了