Investigating how plants recruit antibiotic-producing Streptomyces bacteria to protect themselves against disease
研究植物如何招募产生抗生素的链霉菌来保护自己免受疾病侵害
基本信息
- 批准号:1799823
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2016
- 资助国家:英国
- 起止时间:2016 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Humans have been using antibiotics to treat disease for less than 100 years but their use in nature stretches back for tens of millions of years. Most of the antibiotics we use are made by a group of common soil bacteria called Streptomyces and plants and insects started using them long before humans. Plants including the model Arabidopsis thaliana and important food crops like wheat, potato and rice, all have Streptomyces living inside their roots. Indeed, several recent high profile papers have shown that Streptomyces bacteria are enriched in the rhizosphere (the soil coating the roots) and even more greatly enriched inside the roots of Arabidopsis compared to the surrounding soil. Research published in Science in August 2015 suggests that Streptomyces bacteria are specifically attracted by salicylic acid (SA) that is produced by the plants as part of their general stress response. The suggestion is that Streptomyces (but not all bacteria) can use SA as a food source and thus the plants can specifically select bacteria that are useful to them out of the trillions of bacteria present in the soil. The antibiotics made by these Streptomyces strains are thought to protect the plant roots against fungal infection. In this project we will use Arabidopsis as a model to test (1) if Streptomyces bacteria in the rhizosphere and roots are really using plant-produced SA as food, (2) if any and all Streptomyces strains can live inside plant roots, (3) if SA metabolism is essential for root colonisation by Streptomyces and (4) if Streptomyces-produced antifungals do indeed protect the plants against fungal infection. Ultimately this work will lay the foundation for engineering improved Streptomyces strains for use in agriculture and thus contribute to global food security.
人类使用抗生素治疗疾病不到100年,但它们在自然界中的使用可以追溯到数千万年前。我们使用的大多数抗生素是由一组名为链霉菌的常见土壤细菌制造的,植物和昆虫早在人类之前就开始使用它们。包括拟南芥模型在内的植物,以及小麦、土豆和水稻等重要粮食作物,都有链霉菌生活在它们的根部。事实上,最近几篇备受瞩目的论文表明,链霉菌在根际(覆盖根部的土壤)中富含,与周围土壤相比,拟南芥根部内的富集度更高。2015年8月发表在《科学》杂志上的研究表明,链霉菌特别被水杨酸(SA)吸引,水杨酸是植物作为一般压力反应的一部分。建议是链霉菌(但不是所有的细菌)可以利用SA作为食物来源,因此植物可以从土壤中存在的数万亿细菌中专门选择对它们有用的细菌。这些链霉菌菌株制造的抗生素被认为可以保护植物的根不受真菌感染。在这个项目中,我们将使用拟南芥作为模型来测试(1)根际和根中的链霉菌是否真的以植物产生的SA为食物,(2)是否有任何和所有的链霉菌菌株可以生活在植物根内,(3)SA代谢是否对链霉菌的根定植至关重要,以及(4)链霉菌产生的抗真菌药物是否真的保护植物免受真菌感染。最终,这项工作将为设计用于农业的改良链霉菌菌株奠定基础,从而为全球粮食安全做出贡献。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Streptomyces endophytes promote the growth of Arabidopsis thaliana
- DOI:10.1101/532309
- 发表时间:2019-01
- 期刊:
- 影响因子:0
- 作者:Sarah F. Worsley;J. Newitt;Johannes Rassbach;S. Batey;Neil A. Holmes;J. Murrell;B. Wilkinson;M. Hu
- 通讯作者:Sarah F. Worsley;J. Newitt;Johannes Rassbach;S. Batey;Neil A. Holmes;J. Murrell;B. Wilkinson;M. Hu
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似海外基金
Collaborative Research: How do plants control sperm nuclear migration for successful fertilization?
合作研究:植物如何控制精子核迁移以成功受精?
- 批准号:
2334517 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Deciphering plant stress memory: the exploration of how DNA methylation and the rhizosphere microbiome control stress memory in plants
解读植物逆境记忆:探索DNA甲基化和根际微生物如何控制植物逆境记忆
- 批准号:
BB/Z514810/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Fellowship
Collaborative Research: How do plants control sperm nuclear migration for successful fertilization?
合作研究:植物如何控制精子核迁移以成功受精?
- 批准号:
2334516 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
How are plants responding to damage by oxidizing air pollutants?
植物如何应对氧化空气污染物造成的损害?
- 批准号:
DP230100296 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Discovery Projects
Diving Deeper: Unravelling How Plants Regulate Root Growth Angle
深入研究:揭示植物如何调节根部生长角度
- 批准号:
BB/X014843/1 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Research Grant
How does ASYNAPSIS 5 mediate Synaptonemal Complex formation and crossover control in plants?
ASYNAPSIS 5 如何介导植物联会复合体的形成和交叉控制?
- 批准号:
BB/X006212/1 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Research Grant
IntBIO: Collaborative Research: Integrating molecular, cellular, organismal and community scales to understand how plants structure pollinator-pathogen dynamics
IntBIO:合作研究:整合分子、细胞、有机体和群落规模,以了解植物如何构建传粉媒介-病原体动态
- 批准号:
2128222 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: RESEARCH-PGR: Extracellular RNA Produced By Plants: What, Where, How, Who, and Why?
合作研究:RESEARCH-PGR:植物产生的细胞外 RNA:什么、在哪里、如何、谁以及为什么?
- 批准号:
2141970 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
How do circadian rhythms shape the responses of plants to climate change?
昼夜节律如何影响植物对气候变化的反应?
- 批准号:
2749745 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Studentship
Using a functional trait approach to examine how climate change will affect interactions between insect herbivores and their host plants
使用功能性状方法来研究气候变化将如何影响昆虫食草动物与其寄主植物之间的相互作用
- 批准号:
570184-2022 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral