Communicating across the membrane during bacterial cell division

细菌细胞分裂过程中的跨膜通讯

基本信息

  • 批准号:
    1813801
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Studentship
  • 财政年份:
    2016
  • 资助国家:
    英国
  • 起止时间:
    2016 至 无数据
  • 项目状态:
    已结题

项目摘要

The activities of various processes are co-ordinated during bacterial cell division. For instance, the constriction of the division septum is linked to new cell wall synthesis at the division site, which is necessary to stop the cell from bursting due to turgor. Moreover, the proteins of the contractile ring at the division site are cytosolic, yet the enzymes that perform the final, essential polymerising steps in cell wall biosynthesis are found on the outside face of the plasma membrane. Essential activities thus have to be co-ordinated across the membrane, and there is currently a dearth of information on how this takes place. The formation of the cell wall is essential for bacteria, and this process is the target of antibiotics such as penicillin and vancomycin. While antimicrobial resistance continues to rise, it is pertinent to re-evaulate cell wall synthesis as a target for the generation of novel antibiotics.We will examine how cell division regulators affect cell wall synthesis, and determine the molecular mechanisms underpinning the regulation. For instance, we are interested in how EzrA, a regulator of septal contraction, is linked to cell wall synthesis. By two hybrid analyses, it is known that EzrA interacts with both PBP1, a key peptidoglycan synthase, and FtsZ, the bacterial homolog of tubulin, which drives septal contraction. EzrA thus links cytokinetic events on the inside of the cell to peptidoglycan synthesis on the outside, but it is not known how EzrA fulfils its communication role. We have recently solved the crystal structure of EzrA, revealing that it resembles the spectrin family of eukaryotic cytoskeletal proteins. We are also interested in how an unrelated cell division regulator, GpsB, appears to co-ordinate the shuttling of peptidoglycan synthases from the lateral walls of the cell during cell growth, to the division site during cytokinesis. We have solved crystal structures of the individual domains of GpsB, and have used SAXS to generate a model of full-length GpsB. We will use the novel structural information and our well-established biochemical procedures to assess the impact of EzrA, GpsB and other regulators (e.g. PBP3, FtsZ, FtsA) on PBP1 function. The student will focus on trans-membrane communication: how a bacterium co-ordinates processes on both sides of the membrane during division is poorly understood, yet it is essential for the healthy cell. One process that requires such co-ordination, peptidoglycan synthesis, is the target of many overused antibiotics. The strategic importance of the project to the BBSRC is highlighted by the UK government's five year Antimicrobial Resistance Strategy 2013 to 2018. The studentship will underpin the development of novel antimicrobials and alternatives to antimicrobials. The student will receive training in core bioscience skills, and in biochemistry (enzymology) and in biophysics that require rigorous mathematical analysis and understanding of the data (e.g. MST, SPR, ITC, SEC-MALLS), and the student will apply these techniques to the problem of how bacteria build their outer defensive envelopes and how the synthesis of these envelopes is targeted by antimicrobials.
在细菌细胞分裂期间,各种过程的活动是协调的。例如,分裂隔膜的收缩与分裂部位的新细胞壁合成有关,这是阻止细胞因膨压而破裂所必需的。此外,在分裂位点处的收缩环的蛋白质是胞质的,然而在细胞壁生物合成中执行最后的、必要的聚合步骤的酶被发现在质膜的外表面上。因此,基本的活动必须在整个膜上进行协调,目前缺乏关于这是如何发生的信息。细胞壁的形成对细菌至关重要,这一过程是青霉素和万古霉素等抗生素的目标。随着抗生素耐药性的持续上升,重新评估细胞壁合成作为新抗生素产生的靶点是有意义的。我们将研究细胞分裂调节剂如何影响细胞壁合成,并确定支持这种调节的分子机制。例如,我们感兴趣的是EzrA,一个调节间隔收缩,是如何连接到细胞壁合成。通过两个杂交分析,已知EzrA与PBP 1(一种关键的肽聚糖合酶)和FtsZ(驱动隔膜收缩的微管蛋白的细菌同系物)两者相互作用。因此,EzrA将细胞内部的细胞动力学事件与外部的肽聚糖合成联系起来,但目前尚不清楚EzrA如何发挥其通信作用。我们最近解决了EzrA的晶体结构,揭示了它类似于真核细胞骨架蛋白的血影蛋白家族。我们也有兴趣在一个无关的细胞分裂调节,GPSB,似乎协调穿梭的肽聚糖酶从细胞的侧壁在细胞生长过程中,分裂的网站在胞质分裂。我们已经解决了GpsB的各个域的晶体结构,并使用SAXS生成全长GpsB的模型。我们将使用新的结构信息和我们完善的生化程序来评估EzrA,GpsB和其他调节剂(例如PBP 3,FtsZ,FtsA)对PBP 1功能的影响。学生将专注于跨膜通信:细菌在分裂过程中如何协调膜两侧的过程尚不清楚,但它对健康细胞至关重要。其中一个需要这种协调的过程,肽聚糖合成,是许多过度使用的抗生素的目标。该项目对BBSRC的战略重要性在英国政府2013年至2018年的五年抗菌素耐药性战略中得到了强调。该奖学金将支持新型抗菌剂和抗菌剂替代品的开发。学生将接受核心生物科学技能,生物化学(酶学)和生物物理学方面的培训,这些培训需要严格的数学分析和对数据的理解(例如MST,SPR,ITC,SEC-MALLS),学生将把这些技术应用于细菌如何构建其外部防御包膜以及这些包膜的合成如何被抗菌剂靶向的问题。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
生命分子工学・海洋生命工学研究室
生物分子工程/海洋生物技术实验室
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    --
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship

相似国自然基金

基于鱼血模型研究几种典型人用药物的Read-across假设
  • 批准号:
    21577103
  • 批准年份:
    2015
  • 资助金额:
    65.0 万元
  • 项目类别:
    面上项目

相似海外基金

Protein Transport Across Membrane by Bacterial Pathogens
细菌病原体跨膜蛋白质运输
  • 批准号:
    10711479
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Induction and maintenance of SARS-CoV-2 mRNA vaccine-specific memory across tissues
跨组织的 SARS-CoV-2 mRNA 疫苗特异性记忆的诱导和维持
  • 批准号:
    10751246
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Elucidating the mechanisms of protein secretion across the outer membrane by bacterial autotransporters
阐明细菌自转运蛋白跨外膜分泌蛋白质的机制
  • 批准号:
    10736193
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Synthesis and transport of outer membrane components across the Gram-negative cell envelope
外膜成分的合成和跨革兰氏阴性细胞包膜的运输
  • 批准号:
    10680968
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Combining In Vitro and In Silico Models to Investigate Antiretroviral Drug Transport Across the Blood Brain Barrier for the Treatment of HIV-1 Infection in the Brain
结合体外和计算机模型研究抗逆转录病毒药物跨血脑屏障转运以治疗大脑中的 HIV-1 感染
  • 批准号:
    10838759
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Real-Time Quantitation of Transport Across Vascular-Tissue Interfaces in Organ-On-Chip Models Using In Situ Mass Spectrometry
使用原位质谱法实时定量器官芯片模型中跨血管组织界面的运输
  • 批准号:
    10394501
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Does functional misfolding of TonB drive import across the outer membrane of Gram negative bacteria?
TonB 的功能性错误折叠是否会驱动革兰氏阴性菌外膜的输入?
  • 批准号:
    BB/W007649/1
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Structural basis of protein transport across the outer membrane of human mitochondria (P23)
蛋白质跨人类线粒体外膜转运的结构基础(P23)
  • 批准号:
    495870753
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Collaborative Research Centres
Harmonizing single cell and spatial transcriptomics across HuBMAP organs to generate reproducible and robust maps
协调 HuBMAP 器官的单细胞和空间转录组学,生成可重复且稳健的图谱
  • 批准号:
    10818848
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了