Synthesis and transport of outer membrane components across the Gram-negative cell envelope

外膜成分的合成和跨革兰氏阴性细胞包膜的运输

基本信息

  • 批准号:
    10680968
  • 负责人:
  • 金额:
    $ 57.98万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-01-27 至 2027-12-31
  • 项目状态:
    未结题

项目摘要

Abstract The increasing rise in antibiotic resistance and the diminished discovery of new antimicrobials threatens global healthcare. Of particular concern are Gram-negative pathogens, organisms with an additional outer membrane (OM) that provides intrinsic resistance to multiple classes of antibiotics. Unlike the inner membrane (IM) that is composed solely of glycerophospholipids (GPLs), the OM is asymmetrical with GPLs found in the inner leaflet and lipopolysaccharide (LPS) localized to the outer leaflet. This unique membrane asymmetry affords protection from large polar molecules, as well as lipophilic compounds, creating an impervious barrier. Since the OM is essential, pathways required for its assembly are key targets for antimicrobial design. Currently, there are no antibiotics that directly target OM biogenesis in clinical use. Thus, it remains critical to investigate cell envelope biogenesis for future and current antimicrobial design. Over the last few decades, we have expanded our understanding of OM assembly revealing new targets for antimicrobial design. However, one major gap remained. How are GPLs transported from the IM to the OM across the aqueous periplasm? Recently, we discovered that key members of the AsmA-like family (YhdP, TamB, and YdbH) are critical for OM integrity and involved in GPL transport. We found that YhdP, TamB, and YdbH are redundant in their role in OM lipid homeostasis; however, they are not equivalent. Notably, all three proteins share homology and structural features with eukaryotic GPL transporters and are capable of spanning the periplasm. The overall objective of this application is to investigate the molecular mechanisms required for the assembly and maintenance of the Gram-negative OM. More specifically, we will characterize pathways required to transport GPLs across the cell envelope using E. coli as the model system. In the current application we will (i) characterize the major GPL transporters (YhdP, TamB, and YdbH), (ii) identify accessory proteins required for GPL transbilayer movement, and (iii) determine how loss of these systems impact OM lipid homeostasis and antibiotic resistance.
摘要 抗生素耐药性的增加和新抗菌药物发现的减少威胁着全球 健康护理特别值得关注的是革兰氏阴性病原体,即具有额外外膜的生物体 (OM)对多种抗生素产生内在抗性与内膜(IM)不同, 仅由甘油磷脂(GPL)组成,OM与内瓣叶中发现的GPL不对称 和脂多糖(LPS)定位于外小叶。这种独特的膜不对称性 保护免受大极性分子以及亲脂性化合物的影响,从而形成不可渗透的屏障。以来 OM是必不可少的,其组装所需的途径是抗菌设计的关键目标。目前, 在临床使用中没有直接靶向OM生物发生的抗生素。因此,仍然必须调查 细胞被膜生物发生用于未来和当前的抗微生物设计。 在过去的几十年里,我们扩大了对OM组装的理解,揭示了新的目标, 抗菌设计然而,仍然存在一个重大差距。GPL如何从IM传输到OM 穿过水周质最近,我们发现AsMA样家族的关键成员(YhdP, TamB和YdbH)对于OM完整性至关重要,并参与GPL传输。我们发现YhdP、TamB和 YdbH在OM脂质稳态中的作用是多余的;然而,它们并不等同。值得注意的是, 蛋白质与真核GPL转运蛋白具有同源性和结构特征,并且能够跨越 周质本申请的总体目标是研究所需的分子机制 用于组装和维护革兰氏阴性OM。更具体地说,我们将描述 使用E. coli为模型系统。在当前 应用程序,我们将(i)描述主要的GPL转运蛋白(YhdP,TamB和YdbH),(ii)识别附件 GPL跨双层运动所需的蛋白质,以及(iii)确定这些系统的损失如何影响OM 脂质体内平衡和抗生素抗性。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Michael Stephen Trent其他文献

Michael Stephen Trent的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Michael Stephen Trent', 18)}}的其他基金

The role of cardiolipin in the biogenesis of the Gram-negative bacterial cell envelope
心磷脂在革兰氏阴性细菌细胞包膜生物发生中的作用
  • 批准号:
    10731444
  • 财政年份:
    2023
  • 资助金额:
    $ 57.98万
  • 项目类别:
2022 Bacterial Cell Surfaces GRC/GRS
2022 细菌细胞表面GRC/GRS
  • 批准号:
    10374358
  • 财政年份:
    2022
  • 资助金额:
    $ 57.98万
  • 项目类别:
The Cell Envelope of the Multi-Drug Resistant Pathogen Acinetobacter baumannii
多重耐药病原体鲍曼不动杆菌的细胞包膜
  • 批准号:
    10113527
  • 财政年份:
    2020
  • 资助金额:
    $ 57.98万
  • 项目类别:
The Cell Envelope of the Multi-Drug Resistant Pathogen Acinetobacter baumannii
多重耐药病原体鲍曼不动杆菌的细胞包膜
  • 批准号:
    10542396
  • 财政年份:
    2020
  • 资助金额:
    $ 57.98万
  • 项目类别:
The Cell Envelope of the Multi-Drug Resistant Pathogen Acinetobacter baumannii
多重耐药病原体鲍曼不动杆菌的细胞包膜
  • 批准号:
    10328269
  • 财政年份:
    2020
  • 资助金额:
    $ 57.98万
  • 项目类别:
Molecular mechanisms required for the maintenance of the gram-negative outer membrane
维持革兰氏阴性外膜所需的分子机制
  • 批准号:
    10159193
  • 财政年份:
    2018
  • 资助金额:
    $ 57.98万
  • 项目类别:
Molecular mechanisms required for the maintenance of the gram-negative outer membrane
维持革兰氏阴性外膜所需的分子机制
  • 批准号:
    10403653
  • 财政年份:
    2018
  • 资助金额:
    $ 57.98万
  • 项目类别:
Molecular mechanisms required for the maintenance of the gram-negative outer membrane
维持革兰氏阴性外膜所需的分子机制
  • 批准号:
    9917747
  • 财政年份:
    2018
  • 资助金额:
    $ 57.98万
  • 项目类别:
Development of a novel vaccine platform: Surface Antigen/Adjuvant Vaccine Engineering (SAAVE)
新型疫苗平台的开发:表面抗原/佐剂疫苗工程(SAAVE)
  • 批准号:
    9899172
  • 财政年份:
    2017
  • 资助金额:
    $ 57.98万
  • 项目类别:
Rethinking the barrier: How a Gram-negative bacterium alters its surface to become multidrug resistant
重新思考屏障:革兰氏阴性细菌如何改变其表面以产生多重耐药性
  • 批准号:
    9102680
  • 财政年份:
    2015
  • 资助金额:
    $ 57.98万
  • 项目类别:

相似海外基金

Can antibiotics disrupt biogeochemical nitrogen cycling in the coastal ocean?
抗生素会破坏沿海海洋的生物地球化学氮循环吗?
  • 批准号:
    2902098
  • 财政年份:
    2024
  • 资助金额:
    $ 57.98万
  • 项目类别:
    Studentship
Metallo-Peptides: Arming Cyclic Peptide Antibiotics with New Weapons to Combat Antimicrobial Resistance
金属肽:用新武器武装环肽抗生素以对抗抗菌素耐药性
  • 批准号:
    EP/Z533026/1
  • 财政年份:
    2024
  • 资助金额:
    $ 57.98万
  • 项目类别:
    Research Grant
The role of RNA repair in bacterial responses to translation-inhibiting antibiotics
RNA修复在细菌对翻译抑制抗生素的反应中的作用
  • 批准号:
    BB/Y004035/1
  • 财政年份:
    2024
  • 资助金额:
    $ 57.98万
  • 项目类别:
    Research Grant
Towards the sustainable discovery and development of new antibiotics
迈向新抗生素的可持续发现和开发
  • 批准号:
    FT230100468
  • 财政年份:
    2024
  • 资助金额:
    $ 57.98万
  • 项目类别:
    ARC Future Fellowships
DYNBIOTICS - Understanding the dynamics of antibiotics transport in individual bacteria
DYNBIOTICS - 了解抗生素在单个细菌中转运的动态
  • 批准号:
    EP/Y023528/1
  • 财政年份:
    2024
  • 资助金额:
    $ 57.98万
  • 项目类别:
    Research Grant
Engineering Streptomyces bacteria for the sustainable manufacture of antibiotics
工程化链霉菌用于抗生素的可持续生产
  • 批准号:
    BB/Y007611/1
  • 财政年份:
    2024
  • 资助金额:
    $ 57.98万
  • 项目类别:
    Research Grant
The disulfide bond as a chemical tool in cyclic peptide antibiotics: engineering disulfide polymyxins and murepavadin
二硫键作为环肽抗生素的化学工具:工程化二硫多粘菌素和 murepavadin
  • 批准号:
    MR/Y033809/1
  • 财政年份:
    2024
  • 资助金额:
    $ 57.98万
  • 项目类别:
    Research Grant
Role of phenotypic heterogeneity in mycobacterial persistence to antibiotics: Prospects for more effective treatment regimens
表型异质性在分枝杆菌对抗生素持久性中的作用:更有效治疗方案的前景
  • 批准号:
    494853
  • 财政年份:
    2023
  • 资助金额:
    $ 57.98万
  • 项目类别:
    Operating Grants
Imbalance between cell biomass production and envelope biosynthesis underpins the bactericidal activity of cell wall -targeting antibiotics
细胞生物量产生和包膜生物合成之间的不平衡是细胞壁靶向抗生素杀菌活性的基础
  • 批准号:
    2884862
  • 财政年份:
    2023
  • 资助金额:
    $ 57.98万
  • 项目类别:
    Studentship
Narrow spectrum antibiotics for the prevention and treatment of soft-rot plant disease
防治植物软腐病的窄谱抗生素
  • 批准号:
    2904356
  • 财政年份:
    2023
  • 资助金额:
    $ 57.98万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了