Development and validation of tools for systematic review and meta-analyses of complex, biological data sets

开发和验证复杂生物数据集的系统审查和荟萃分析工具

基本信息

  • 批准号:
    1814195
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Studentship
  • 财政年份:
    2020
  • 资助国家:
    英国
  • 起止时间:
    2020 至 无数据
  • 项目状态:
    已结题

项目摘要

This PhD project will make a specific and unique contribution to developing, validating and operationalising "living" systematic review (SR) and meta-analysis analysis of complex biological datasets as part of the SLIM (Systemic Living Information Machine) programme; a CAMARADES (Collaborative Approach to Meta-Analysis and Review of Animal Data from Experimental Studies www.dcn.ed.ac.uk/camarades ) initiative. SRs are vital research tools and are important for evidence-based decision making however, in preclinical research, the use of SR and meta-analysis (MA) are relatively novel. The methods for the conduct of SRs are well developed but they are resource intensive (Tricco et al., 2008) and the time they take to complete weakens their usefulness as they are often out of date once they have been published (Shojania et al., 2007). This problem is being exacerbated by the exponentially increasing number of publications in databases (Bastian et al., 2010). To address the complexities and challenges of research involving animals, CAMARADES have adapted the SR and MA techniques for use in the laboratory research arena to provide empirical evidence from which decisions can be made thereby reducing waste of research investment (Macleod et al., 2014). Living SRs (LSR) are SRs that are continually updated, incorporating relevant new evidence as it becomes available (Elliott et al., 2017). Allowing humans and machines to interact and operate in mutually supportive ways to save time and improve accuracy. LSRs will be of great utility in fields of research which are moving quickly as they will increase efficiency and sustainability of SRs. This project will address a remaining challenge to implementation of LSR for in vivo biological data; outcome data extraction. Compared to the clinical data used in systematic review, basic science data is presented using a vast range and often idiosyncratic formats, therefore, a machine assisted approach coupled to crowd-based methods are the most feasible solution. The aims of this project are three-fold: (i)To update and refine the bespoke machine-assisted data extraction toolkit specifically for machine assisted outcome data extraction in an in vivo pain neurobiology SR setting. (ii)To explore and prepare crowd-based approaches for toolkit deployment in LRS (iii) To test the toolkit in controlled trials, conducted using the SyRF platform in the context of exemplar automated SRs in three key areas of need in pain neurobiology: (i) Existing data: Determine normative values of lab rodent sensory thresholds to thermal, mechanical and cold stimuli. Evoked limb withdrawal to noxious heat, cold and mechanical stimuli is a ubiquitous and long standing method for determining sensory responses in rodents. (ii) Emerging data: measuring complex ethologically relevant pain behaviours in rodents and determining how these are perturbed by spontaneous pain is an emerging and rapidly growing area of pain research. As this field continues to expand it will benefit from an LSR being instituted at an early stage. (iii) Future opportunities: Many areas of neuroscience, including pain, now use video recording of a range of animal behaviours. This represents an opportunity to develop machine learning based automated analysis of digital files which could potentially be introduced into LSRs. The development and incorporation of machine-assisted data extraction and MAs tools in open-source, online SR software would be beneficial and necessary to facilitate the production of accurate and timely evidence synthesis to improve decision making as well as contributing to the future functionality and success of LSRs. These powerful tools will assist in making sense of an exponentially growing body of data which will ultimately, make what was previously thought of as unattainable, attainable
该博士项目将为开发,验证和操作“活”系统综述(SR)和复杂生物数据集的元分析分析做出具体而独特的贡献,作为SLIM(系统生命信息机)计划的一部分; CAMARADES(实验研究动物数据的元分析和综述的合作方法www.dcn.ed.ac.uk/camarades)倡议。SR是重要的研究工具,对于循证决策非常重要,然而,在临床前研究中,SR和荟萃分析(MA)的使用相对较新。进行员工代表的方法已经很成熟,但需要大量资源(Tricco等人,2008),并且它们完成所花费的时间削弱了它们的有用性,因为它们一旦被出版就经常过时(Shojania等人,2007年)。数据库中出版物数量呈指数级增长加剧了这一问题(Bastian等人,2010年)。为了解决涉及动物的研究的复杂性和挑战,CAMARADES已经将SR和MA技术应用于实验室研究竞技场,以提供可以做出决策的经验证据,从而减少研究投资的浪费(麦克劳德等人,2014年)。活的SR(LSR)是不断更新的SR,在其变得可用时并入相关的新证据(Elliott等人,2017年)。允许人类和机器以相互支持的方式进行交互和操作,以节省时间并提高准确性。在发展迅速的研究领域,地方工作人员代表将具有很大的效用,因为它们将提高工作人员代表的效率和可持续性。本项目将解决活体生物学数据LSR实施的剩余挑战;结果数据提取。与系统性综述中使用的临床数据相比,基础科学数据使用广泛且通常特殊的格式呈现,因此,机器辅助方法结合基于人群的方法是最可行的解决方案。该项目的目标有三个方面:(i)更新和完善定制的机器辅助数据提取工具包,专门用于体内疼痛神经生物学SR设置中的机器辅助结局数据提取。(ii)探索和准备在LRS中部署工具包的基于人群的方法(iii)在对照试验中测试工具包,在疼痛神经生物学三个关键需求领域的示例自动SR背景下使用SyRF平台进行:(i)现有数据:确定实验室啮齿动物对热,机械和冷刺激的感觉阈值的标准值。热、冷、机械刺激引起的肢体退缩是一种普遍存在的、长期存在的啮齿类动物感觉反应测定方法。(ii)新出现的数据:测量啮齿类动物复杂的行为学相关疼痛行为并确定自发性疼痛如何干扰这些行为是疼痛研究的新兴和快速增长的领域。随着这一领域的不断扩大,它将受益于在早期阶段建立的LSR。(iii)未来的机会:神经科学的许多领域,包括疼痛,现在使用一系列动物行为的视频记录。这代表了一个开发基于机器学习的数字文件自动分析的机会,这些文件可能会引入到LSR中。在开放源代码的在线统计报告软件中开发和纳入机器辅助数据提取和管理和评估工具,将是有益的,也是必要的,有助于制作准确和及时的证据综合,以改进决策,并有助于地方统计报告的未来功能和成功。这些强大的工具将有助于理解呈指数级增长的数据体,这些数据体最终将使以前认为无法实现的东西变得可以实现

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

Internet-administered, low-intensity cognitive behavioral therapy for parents of children treated for cancer: A feasibility trial (ENGAGE).
针对癌症儿童父母的互联网管理、低强度认知行为疗法:可行性试验 (ENGAGE)。
  • DOI:
    10.1002/cam4.5377
  • 发表时间:
    2023-03
  • 期刊:
  • 影响因子:
    4
  • 作者:
  • 通讯作者:
Differences in child and adolescent exposure to unhealthy food and beverage advertising on television in a self-regulatory environment.
在自我监管的环境中,儿童和青少年在电视上接触不健康食品和饮料广告的情况存在差异。
  • DOI:
    10.1186/s12889-023-15027-w
  • 发表时间:
    2023-03-23
  • 期刊:
  • 影响因子:
    4.5
  • 作者:
  • 通讯作者:
The association between rheumatoid arthritis and reduced estimated cardiorespiratory fitness is mediated by physical symptoms and negative emotions: a cross-sectional study.
类风湿性关节炎与估计心肺健康降低之间的关联是由身体症状和负面情绪介导的:一项横断面研究。
  • DOI:
    10.1007/s10067-023-06584-x
  • 发表时间:
    2023-07
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
  • 通讯作者:
ElasticBLAST: accelerating sequence search via cloud computing.
ElasticBLAST:通过云计算加速序列搜索。
  • DOI:
    10.1186/s12859-023-05245-9
  • 发表时间:
    2023-03-26
  • 期刊:
  • 影响因子:
    3
  • 作者:
  • 通讯作者:
Amplified EQCM-D detection of extracellular vesicles using 2D gold nanostructured arrays fabricated by block copolymer self-assembly.
使用通过嵌段共聚物自组装制造的 2D 金纳米结构阵列放大 EQCM-D 检测细胞外囊泡。
  • DOI:
    10.1039/d2nh00424k
  • 发表时间:
    2023-03-27
  • 期刊:
  • 影响因子:
    9.7
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    --
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship

相似海外基金

Computational Infrastructure for Automated Force Field Development and Optimization
用于自动力场开发和优化的计算基础设施
  • 批准号:
    10699200
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Development of serologic test for early risk stratification of islet autoimmunity in genetically predisposed T1D individuals
开发用于遗传易感性 T1D 个体胰岛自身免疫早期风险分层的血清学检测
  • 批准号:
    10760885
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Development of practical screening tools to support targeted prevention of early, high-risk drinking substance use
开发实用的筛查工具,以支持有针对性地预防早期高风险饮酒物质的使用
  • 批准号:
    10802793
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Development and validation of innovative, near real-time analytical tools to enable mitigation of contamination within cleanrooms of the UK spacecraft
开发和验证创新的近实时分析工具,以减轻英国航天器洁净室内的污染
  • 批准号:
    ST/X005356/1
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Training Grant
Leveraging a novel health records platform to predict the development of cardiovascular disease following kidney transplantation
利用新型健康记录平台预测肾移植后心血管疾病的发展
  • 批准号:
    10679322
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Development of standardized resources for characterization of the resident ocular surface microbiome.
开发用于表征驻留眼表微生物组的标准化资源。
  • 批准号:
    10661354
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Development of data driven and AI empowered systems biology to study human diseases
数据驱动和人工智能的发展使系统生物学能够研究人类疾病
  • 批准号:
    10714763
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
High throughput platform for simultaneous multiparametric assessment of cardiac physiology for heart failure drug development
用于心力衰竭药物开发的心脏生理学同步多参数评估的高通量平台
  • 批准号:
    10745000
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Development of Analytical Tools for Concentration and Real-Time Control of Dissolved Gases and Their Regulation of Tissue Function
溶解气体浓度和实时控制及其组织功能调节分析工具的开发
  • 批准号:
    10567233
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Development and application of auxin-inducible degradation in Candida pathogens
念珠菌病原体生长素诱导降解的开发和应用
  • 批准号:
    10742370
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了